Step
*
of Lemma
concat-lifting-loc-gen_wf
∀[B:Type]. ∀[n:ℕ]. ∀[A:ℕn ⟶ Type]. ∀[f:Id ⟶ funtype(n;A;bag(B))].
(concat-lifting-loc-gen(n;f) ∈ Id ⟶ (k:ℕn ⟶ bag(A k)) ⟶ bag(B))
BY
{ ProveWfLemma }
Latex:
Latex:
\mforall{}[B:Type]. \mforall{}[n:\mBbbN{}]. \mforall{}[A:\mBbbN{}n {}\mrightarrow{} Type]. \mforall{}[f:Id {}\mrightarrow{} funtype(n;A;bag(B))].
(concat-lifting-loc-gen(n;f) \mmember{} Id {}\mrightarrow{} (k:\mBbbN{}n {}\mrightarrow{} bag(A k)) {}\mrightarrow{} bag(B))
By
Latex:
ProveWfLemma
Home
Index