Nuprl Lemma : consistent-local-simulation
∀g,f:Name ⟶ Type. ∀X:EClass(Interface).
(LocalClass(X)
⇒ (∀locs:bag(Id). ∀hdr:Name.
∀es:EO+(Message(f)). ∀ee:E List.
((∀e1,e2∈ee. local-simulation-inputs(es;e1;hdr;locs) || local-simulation-inputs(es;e2;hdr;locs))
⇒ (∀hdrs:Name List
((∀e∈ee.eo-msg-interface-constraint(local-simulation-eo(es;e;hdr;locs);X;hdrs;g))
⇒ (∃eo:EO+(Message(g))
(eo-msg-interface-constraint(eo;X;hdrs;g)
∧ (∀e∈ee.∀[v:Interface]
(↑has-header-and-in-locs(info(e);hdr;locs)) ∧ (∃e':E. v ∈ X(e'))
supposing v ∈ local-simulation-class(X;locs;hdr)(e)))))))
supposing hdr encodes Id × Message(g)))
Proof
Definitions occuring in Statement :
eo-msg-interface-constraint: eo-msg-interface-constraint(es;X;hdrs;f)
,
msg-interface: Interface
,
local-simulation-eo: local-simulation-eo(es;e;hdr;locs)
,
local-simulation-inputs: local-simulation-inputs(es;e;hdr;locs)
,
has-header-and-in-locs: has-header-and-in-locs(msg;hdr;locs)
,
local-simulation-class: local-simulation-class(X;locs;hdr)
,
encodes-msg-type: hdr encodes T
,
Message: Message(f)
,
global-order-compat: L1 || L2
,
local-class: LocalClass(X)
,
classrel: v ∈ X(e)
,
eclass: EClass(A[eo; e])
,
es-info: info(e)
,
event-ordering+: EO+(Info)
,
es-E: E
,
Id: Id
,
name: Name
,
pairwise: (∀x,y∈L. P[x; y])
,
l_all: (∀x∈L.P[x])
,
list: T List
,
assert: ↑b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
function: x:A ⟶ B[x]
,
product: x:A × B[x]
,
universe: Type
,
bag: bag(T)
Definitions unfolded in proof :
label: ...$L... t
,
top: Top
,
guard: {T}
,
cand: A c∧ B
,
exists: ∃x:A. B[x]
,
local-simulation-eo: local-simulation-eo(es;e;hdr;locs)
,
rev_implies: P
⇐ Q
,
and: P ∧ Q
,
iff: P
⇐⇒ Q
,
so_apply: x[s1;s2]
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s]
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
encodes-msg-type: hdr encodes T
,
subtype_rel: A ⊆r B
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
uimplies: b supposing a
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
,
l_all: (∀x∈L.P[x])
,
squash: ↓T
,
less_than: a < b
,
not: ¬A
,
false: False
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
or: P ∨ Q
,
decidable: Dec(P)
,
lelt: i ≤ j < k
,
int_seg: {i..j-}
,
bag-member: x ↓∈ bs
,
classrel: v ∈ X(e)
Latex:
\mforall{}g,f:Name {}\mrightarrow{} Type. \mforall{}X:EClass(Interface).
(LocalClass(X)
{}\mRightarrow{} (\mforall{}locs:bag(Id). \mforall{}hdr:Name.
\mforall{}es:EO+(Message(f)). \mforall{}ee:E List.
((\mforall{}e1,e2\mmember{}ee.
local-simulation-inputs(es;e1;hdr;locs) || local-simulation-inputs(es;e2;hdr;locs))
{}\mRightarrow{} (\mforall{}hdrs:Name List
((\mforall{}e\mmember{}ee.eo-msg-interface-constraint(local-simulation-eo(es;e;hdr;locs);X;hdrs;g))
{}\mRightarrow{} (\mexists{}eo:EO+(Message(g))
(eo-msg-interface-constraint(eo;X;hdrs;g)
\mwedge{} (\mforall{}e\mmember{}ee.\mforall{}[v:Interface]
(\muparrow{}has-header-and-in-locs(info(e);hdr;locs)) \mwedge{} (\mexists{}e':E. v \mmember{} X(e'))
supposing v \mmember{} local-simulation-class(X;locs;hdr)(e)))))))
supposing hdr encodes Id \mtimes{} Message(g)))
Date html generated:
2016_05_17-AM-09_14_13
Last ObjectModification:
2016_04_03-PM-09_43_43
Theory : classrel!lemmas
Home
Index