Nuprl Lemma : disjoint-union-comb-es-sv
∀[Info,A,B:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(A)]. ∀[Y:EClass(B)].
  (es-sv-class(es;X (+) Y)) supposing (disjoint-classrel(es;A;X;B;Y) and es-sv-class(es;Y) and es-sv-class(es;X))
Proof
Definitions occuring in Statement : 
disjoint-union-comb: X (+) Y, 
es-sv-class: es-sv-class(es;X), 
disjoint-classrel: disjoint-classrel(es;A;X;B;Y), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
disjoint-union-comb: X (+) Y, 
member: t ∈ T, 
all: ∀x:A. B[x], 
prop: ℙ, 
so_lambda: λ2x y.t[x; y], 
subtype_rel: A ⊆r B, 
so_apply: x[s1;s2], 
implies: P ⇒ Q
Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].
    (es-sv-class(es;X  (+)  Y))  supposing 
          (disjoint-classrel(es;A;X;B;Y)  and 
          es-sv-class(es;Y)  and 
          es-sv-class(es;X))
Date html generated:
2016_05_17-AM-09_34_25
Last ObjectModification:
2015_12_29-PM-03_58_55
Theory : classrel!lemmas
Home
Index