Step
*
of Lemma
event_in_sv_classrel_is_in_class
∀[Info,T:Type]. ∀eo:EO+(Info). ∀[e:E]. ∀[v:T]. ∀[X:EClass(T)]. ((v ∈ X(e) ∧ Singlevalued(X))
⇒ (e ∈ E(X)))
BY
{ ((UnivCD THENA MaAuto)
THEN D (-1)
THEN RepUR ``es-E-interface in-eclass`` 0
THEN RepUR ``classrel`` (-2)
THEN RepUR ``sv-class`` (-1)
THEN (InstHyp [⌜eo⌝; ⌜e⌝] (-1)⋅ THENA Auto)
THEN MemTypeCD
THEN Try (Complete (Auto))
THEN (Assert ⌜(#(X eo e) = 0 ∈ ℤ) ∨ (#(X eo e) = 1 ∈ ℤ)⌝⋅ THENA Auto')
THEN D (-1)
THEN HypSubst' (-1) 0
THEN HypSubst' (-1) (-2)
THEN Auto
THEN (InstLemma `bag-size-zero` [⌜T⌝; ⌜X eo e⌝]⋅ THENA Auto)
THEN HypSubst' (-1) (-5)
THEN Try (Fold `empty-bag` (-5))
THEN FLemma `bag-member-empty` [-5]
THEN Auto) }
Latex:
Latex:
\mforall{}[Info,T:Type].
\mforall{}eo:EO+(Info). \mforall{}[e:E]. \mforall{}[v:T]. \mforall{}[X:EClass(T)]. ((v \mmember{} X(e) \mwedge{} Singlevalued(X)) {}\mRightarrow{} (e \mmember{} E(X)))
By
Latex:
((UnivCD THENA MaAuto)
THEN D (-1)
THEN RepUR ``es-E-interface in-eclass`` 0
THEN RepUR ``classrel`` (-2)
THEN RepUR ``sv-class`` (-1)
THEN (InstHyp [\mkleeneopen{}eo\mkleeneclose{}; \mkleeneopen{}e\mkleeneclose{}] (-1)\mcdot{} THENA Auto)
THEN MemTypeCD
THEN Try (Complete (Auto))
THEN (Assert \mkleeneopen{}(\#(X eo e) = 0) \mvee{} (\#(X eo e) = 1)\mkleeneclose{}\mcdot{} THENA Auto')
THEN D (-1)
THEN HypSubst' (-1) 0
THEN HypSubst' (-1) (-2)
THEN Auto
THEN (InstLemma `bag-size-zero` [\mkleeneopen{}T\mkleeneclose{}; \mkleeneopen{}X eo e\mkleeneclose{}]\mcdot{} THENA Auto)
THEN HypSubst' (-1) (-5)
THEN Try (Fold `empty-bag` (-5))
THEN FLemma `bag-member-empty` [-5]
THEN Auto)
Home
Index