Nuprl Lemma : local-simulation-classrel
∀[f:Name ⟶ Type]. ∀[Info,T:Type]. ∀[X:EClass(T)].
  ∀locs:bag(Id). ∀hdr:Name.
    ∀es:EO+(Message(f)). ∀e:E.
      ∀[v:T]
        uiff(v ∈ local-simulation-class(X;locs;hdr)(e);(↑has-header-and-in-locs(info(e);hdr;locs))
        ∧ v ∈ X(local-simulation-event(es;e;hdr;locs))) 
      supposing LocalClass(X) 
    supposing hdr encodes Id × Info
Proof
Definitions occuring in Statement : 
local-simulation-event: local-simulation-event(es;e;hdr;locs), 
local-simulation-eo: local-simulation-eo(es;e;hdr;locs), 
has-header-and-in-locs: has-header-and-in-locs(msg;hdr;locs), 
local-simulation-class: local-simulation-class(X;locs;hdr), 
encodes-msg-type: hdr encodes T, 
Message: Message(f), 
local-class: LocalClass(X), 
classrel: v ∈ X(e), 
eclass: EClass(A[eo; e]), 
es-info: info(e), 
event-ordering+: EO+(Info), 
es-E: E, 
Id: Id, 
name: Name, 
assert: ↑b, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
universe: Type, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
encodes-msg-type: hdr encodes T, 
guard: {T}, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
top: Top, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
false: False, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
local-simulation-class: local-simulation-class(X;locs;hdr), 
iff: P ⇐⇒ Q, 
true: True, 
classrel: v ∈ X(e), 
bag-member: x ↓∈ bs, 
squash: ↓T, 
rev_implies: P ⇐ Q, 
base-process-class: base-process-class(X;loc;hdr), 
Id: Id, 
cand: A c∧ B, 
msg-type: msg-type(msg;f), 
eclass: EClass(A[eo; e]), 
rev_uimplies: rev_uimplies(P;Q), 
let: let, 
class-ap: X(e), 
listp: A List+, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
less_than: a < b, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
eo-local-agree: eo-local-agree(Info;eo1;eo2;e1;e2), 
local-simulation-eo: local-simulation-eo(es;e;hdr;locs), 
base-process-inputs: base-process-inputs(loc;hdr;es;e), 
local-simulation-inputs: local-simulation-inputs(es;e;hdr;locs), 
mapfilter: mapfilter(f;P;L), 
es-le-before: ≤loc(e), 
local-simulation-event: local-simulation-event(es;e;hdr;locs), 
compose: f o g, 
band: p ∧b q
Latex:
\mforall{}[f:Name  {}\mrightarrow{}  Type].  \mforall{}[Info,T:Type].  \mforall{}[X:EClass(T)].
    \mforall{}locs:bag(Id).  \mforall{}hdr:Name.
        \mforall{}es:EO+(Message(f)).  \mforall{}e:E.
            \mforall{}[v:T]
                uiff(v  \mmember{}  local-simulation-class(X;locs;hdr)(e);(\muparrow{}has-header-and-in-locs(info(e);hdr;locs))
                \mwedge{}  v  \mmember{}  X(local-simulation-event(es;e;hdr;locs))) 
            supposing  LocalClass(X) 
        supposing  hdr  encodes  Id  \mtimes{}  Info
Date html generated:
2016_05_17-AM-09_13_47
Last ObjectModification:
2016_01_17-PM-11_16_51
Theory : classrel!lemmas
Home
Index