Nuprl Lemma : memory-classrel1-sv
∀[Info,A1,S:Type].
  ∀init:Id ⟶ S. ∀tr1:Id ⟶ A1 ⟶ S ⟶ S. ∀X1:EClass(A1). ∀es:EO+(Info). ∀e:E. ∀v:S.
    (single-valued-classrel(es;X1;A1)
    ⇒ (v ∈ memory-class1(initially init
                          applying tr1
                          on X1)(e)
       ⇐⇒ prior-iterated-classrel(es;A1;S;v;X1;tr1 loc(e);λloc.{init loc};e)))
Proof
Definitions occuring in Statement : 
memory-class1: memory-class1, 
prior-iterated-classrel: prior-iterated-classrel(es;A;S;s;X;f;init;e), 
single-valued-classrel: single-valued-classrel(es;X;T), 
classrel: v ∈ X(e), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-loc: loc(e), 
es-E: E, 
Id: Id, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
apply: f a, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
universe: Type, 
single-bag: {x}
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
true: True, 
Memory1: Memory1(init;tr;X), 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
squash: ↓T, 
guard: {T}
Latex:
\mforall{}[Info,A1,S:Type].
    \mforall{}init:Id  {}\mrightarrow{}  S.  \mforall{}tr1:Id  {}\mrightarrow{}  A1  {}\mrightarrow{}  S  {}\mrightarrow{}  S.  \mforall{}X1:EClass(A1).  \mforall{}es:EO+(Info).  \mforall{}e:E.  \mforall{}v:S.
        (single-valued-classrel(es;X1;A1)
        {}\mRightarrow{}  (v  \mmember{}  memory-class1(initially  init
                                                    applying  tr1
                                                    on  X1)(e)
              \mLeftarrow{}{}\mRightarrow{}  prior-iterated-classrel(es;A1;S;v;X1;tr1  loc(e);\mlambda{}loc.\{init  loc\};e)))
Date html generated:
2016_05_17-AM-10_06_41
Last ObjectModification:
2016_01_17-PM-11_03_27
Theory : classrel!lemmas
Home
Index