Nuprl Lemma : parallel-class-disjoint-classrel
∀[Info,A,B:Type]. ∀[es:EO+(Info)]. ∀[X,Y:EClass(A)]. ∀[Z:EClass(B)].
(disjoint-classrel(es;A;X;B;Z)
⇒ disjoint-classrel(es;A;Y;B;Z)
⇒ disjoint-classrel(es;A;X || Y;B;Z))
Proof
Definitions occuring in Statement :
parallel-class: X || Y
,
disjoint-classrel: disjoint-classrel(es;A;X;B;Y)
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
disjoint-classrel: disjoint-classrel(es;A;X;B;Y)
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
or: P ∨ Q
,
not: ¬A
,
false: False
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
sq_or: a ↓∨ b
,
squash: ↓T
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
guard: {T}
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
Latex:
\mforall{}[Info,A,B:Type]. \mforall{}[es:EO+(Info)]. \mforall{}[X,Y:EClass(A)]. \mforall{}[Z:EClass(B)].
(disjoint-classrel(es;A;X;B;Z)
{}\mRightarrow{} disjoint-classrel(es;A;Y;B;Z)
{}\mRightarrow{} disjoint-classrel(es;A;X || Y;B;Z))
Date html generated:
2016_05_17-AM-09_34_02
Last ObjectModification:
2015_12_29-PM-03_59_47
Theory : classrel!lemmas
Home
Index