Nuprl Lemma : primed-class-opt-es-sv0
∀[Info,B:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(B)]. ∀[init:Id ⟶ bag(B)]. ∀[e:E].
((#(init loc(e)) ≤ 1)
⇒ (∀e':E. ((e' <loc e)
⇒ (#(X es e') ≤ 1)))
⇒ (#(Prior(X)?init es e) ≤ 1))
Proof
Definitions occuring in Statement :
primed-class-opt: Prior(X)?b
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-locl: (e <loc e')
,
es-loc: loc(e)
,
es-E: E
,
Id: Id
,
uall: ∀[x:A]. B[x]
,
le: A ≤ B
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
natural_number: $n
,
universe: Type
,
bag-size: #(bs)
,
bag: bag(T)
Definitions unfolded in proof :
primed-class-opt: Prior(X)?b
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
eclass: EClass(A[eo; e])
,
subtype_rel: A ⊆r B
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
prop: ℙ
,
uimplies: b supposing a
,
do-apply: do-apply(f;x)
,
can-apply: can-apply(f;x)
,
and: P ∧ Q
,
or: P ∨ Q
,
isl: isl(x)
,
outl: outl(x)
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
true: True
,
sq_exists: ∃x:{A| B[x]}
,
sq_stable: SqStable(P)
,
squash: ↓T
,
not: ¬A
,
false: False
,
bfalse: ff
,
nat: ℕ
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
le: A ≤ B
Latex:
\mforall{}[Info,B:Type]. \mforall{}[es:EO+(Info)]. \mforall{}[X:EClass(B)]. \mforall{}[init:Id {}\mrightarrow{} bag(B)]. \mforall{}[e:E].
((\#(init loc(e)) \mleq{} 1)
{}\mRightarrow{} (\mforall{}e':E. ((e' <loc e) {}\mRightarrow{} (\#(X es e') \mleq{} 1)))
{}\mRightarrow{} (\#(Prior(X)?init es e) \mleq{} 1))
Date html generated:
2016_05_17-AM-09_16_24
Last ObjectModification:
2016_01_17-PM-11_14_42
Theory : classrel!lemmas
Home
Index