Nuprl Lemma : primed-class-opt-single-val0
∀[Info,B:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(B)]. ∀[init:Id ⟶ bag(B)].
  ∀e:E. ∀v1,v2:B.
    (single-valued-bag(init loc(e);B)
    ⇒ single-valued-classrel(es;X;B)
    ⇒ v1 ∈ Prior(X)?init(e)
    ⇒ v2 ∈ Prior(X)?init(e)
    ⇒ (v1 = v2 ∈ B))
Proof
Definitions occuring in Statement : 
primed-class-opt: Prior(X)?b, 
single-valued-classrel: single-valued-classrel(es;X;T), 
classrel: v ∈ X(e), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-loc: loc(e), 
es-E: E, 
Id: Id, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T, 
single-valued-bag: single-valued-bag(b;T), 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
squash: ↓T, 
or: P ∨ Q, 
exists: ∃x:A. B[x], 
single-valued-bag: single-valued-bag(b;T), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
es-p-local-pred: es-p-local-pred(es;P), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
es-locl: (e <loc e'), 
not: ¬A, 
false: False, 
guard: {T}, 
single-valued-classrel: single-valued-classrel(es;X;T)
Latex:
\mforall{}[Info,B:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(B)].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].
    \mforall{}e:E.  \mforall{}v1,v2:B.
        (single-valued-bag(init  loc(e);B)
        {}\mRightarrow{}  single-valued-classrel(es;X;B)
        {}\mRightarrow{}  v1  \mmember{}  Prior(X)?init(e)
        {}\mRightarrow{}  v2  \mmember{}  Prior(X)?init(e)
        {}\mRightarrow{}  (v1  =  v2))
Date html generated:
2016_05_17-AM-09_16_18
Last ObjectModification:
2016_01_17-PM-11_13_41
Theory : classrel!lemmas
Home
Index