Step
*
1
2
1
1
of Lemma
rec-bind-classrel2
.....assertion.....
1. Info : Type
2. A : Type
3. B : Type
4. X : A ⟶ EClass(B)
5. Y : A ⟶ EClass(A)
6. not-self-starting{i:l}(Info;A;Y)
7. es : EO+(Info)
8. e : E@i
9. ∀e':E
((e' < e)
⇒ (∀a:A. ∀v:B.
uiff(v ∈ rec-bind-class(X;Y) a(e');↓v ∈ X a(e')
∨ (∃a':A. (a' ∈ Y a(e') ∧ v ∈ X a'(e')))
∨ (∃e1:E
∃a':A
((e1 <loc e') ∧ a' ∈ Y a(e1) ∧ v ∈ rec-bind-class(X;Y) a'(e'))))))
10. a : A@i
11. v : B@i
12. e' : E
13. e' = e ∈ E
14. x : A
15. x ∈ Y a(e')
16. v ∈ Y x >>= rec-bind-class(X;Y)(e)
17. x ∈ Y a(e)
⊢ False
BY
{ (MaUseClassRel (-2)
THEN OnMaybeHyp 6 (\h. (Unfold `not-self-starting` h THEN (InstHyp [⌜a⌝;⌜x⌝;⌜es⌝;⌜e⌝;⌜x1⌝] h⋅ THENA Auto)))
THEN D (-6)
THEN (RWO "eo-forward-le" (-6) THENA Auto)
THEN (InstLemma `eo-forward-E-member` [⌜Info⌝;⌜es⌝;⌜e⌝;⌜e1⌝]⋅ THENA Auto)
THEN (RepeatFor 2 (D (-1)) THENA Auto)
THEN (Assert ⌜e = e1 ∈ E⌝⋅ THENA Auto)
THEN (RWO "-1<" (-7) THEN Auto)
THEN RemoveLabel
THEN BLemma `equal-eo-forward-E`
THEN Auto)⋅ }
Latex:
Latex:
.....assertion.....
1. Info : Type
2. A : Type
3. B : Type
4. X : A {}\mrightarrow{} EClass(B)
5. Y : A {}\mrightarrow{} EClass(A)
6. not-self-starting\{i:l\}(Info;A;Y)
7. es : EO+(Info)
8. e : E@i
9. \mforall{}e':E
((e' < e)
{}\mRightarrow{} (\mforall{}a:A. \mforall{}v:B.
uiff(v \mmember{} rec-bind-class(X;Y) a(e');\mdownarrow{}v \mmember{} X a(e')
\mvee{} (\mexists{}a':A. (a' \mmember{} Y a(e') \mwedge{} v \mmember{} X a'(e')))
\mvee{} (\mexists{}e1:E
\mexists{}a':A
((e1 <loc e')
\mwedge{} a' \mmember{} Y a(e1)
\mwedge{} v \mmember{} rec-bind-class(X;Y) a'(e'))))))
10. a : A@i
11. v : B@i
12. e' : E
13. e' = e
14. x : A
15. x \mmember{} Y a(e')
16. v \mmember{} Y x >>= rec-bind-class(X;Y)(e)
17. x \mmember{} Y a(e)
\mvdash{} False
By
Latex:
(MaUseClassRel (-2)
THEN OnMaybeHyp 6 (\mbackslash{}h. (Unfold `not-self-starting` h
THEN (InstHyp [\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}es\mkleeneclose{};\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}x1\mkleeneclose{}] h\mcdot{} THENA Auto)
))
THEN D (-6)
THEN (RWO "eo-forward-le" (-6) THENA Auto)
THEN (InstLemma `eo-forward-E-member` [\mkleeneopen{}Info\mkleeneclose{};\mkleeneopen{}es\mkleeneclose{};\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}e1\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (RepeatFor 2 (D (-1)) THENA Auto)
THEN (Assert \mkleeneopen{}e = e1\mkleeneclose{}\mcdot{} THENA Auto)
THEN (RWO "-1<" (-7) THEN Auto)
THEN RemoveLabel
THEN BLemma `equal-eo-forward-E`
THEN Auto)\mcdot{}
Home
Index