Step
*
of Lemma
rec-comb-es-sv
∀[Info,B:Type]. ∀[n:ℕ]. ∀[A:ℕn ⟶ Type]. ∀[Xs:k:ℕn ⟶ EClass(A k)]. ∀[F:Id ⟶ (k:ℕn ⟶ bag(A k)) ⟶ bag(B) ⟶ bag(B)].
∀[init:Id ⟶ bag(B)]. ∀[es:EO+(Info)].
(es-sv-class(es;rec-comb(Xs;F;init))) supposing
((∀bs:k:ℕn ⟶ bag(A k). ∀l:Id. ∀b:bag(B). ((∀k:ℕn. (#(bs k) ≤ 1))
⇒ (#(b) ≤ 1)
⇒ (#(F l bs b) ≤ 1))) and
(∀k:ℕn. es-sv-class(es;Xs k)) and
(∀l:Id. (#(init l) ≤ 1)))
BY
{ ((UnivCD THENA MaAuto)
THEN Unfold `es-sv-class` 0
THEN VrCausalInd'
THEN RecUnfold `rec-comb` 0
THEN Reduce 0
THEN (BHyp (-3) THENA (Auto THEN Try (Fold `eclass` 0) THEN Auto))
THEN Try (Complete ((Reduce 0 THEN Auto)))
THEN (BLemma `primed-class-opt-es-sv0`⋅ THENA Auto)
THEN Try (Complete ((BHyp (-5) THEN Auto)))
THEN Auto) }
Latex:
Latex:
\mforall{}[Info,B:Type]. \mforall{}[n:\mBbbN{}]. \mforall{}[A:\mBbbN{}n {}\mrightarrow{} Type]. \mforall{}[Xs:k:\mBbbN{}n {}\mrightarrow{} EClass(A k)]. \mforall{}[F:Id
{}\mrightarrow{} (k:\mBbbN{}n {}\mrightarrow{} bag(A k))
{}\mrightarrow{} bag(B)
{}\mrightarrow{} bag(B)].
\mforall{}[init:Id {}\mrightarrow{} bag(B)]. \mforall{}[es:EO+(Info)].
(es-sv-class(es;rec-comb(Xs;F;init))) supposing
((\mforall{}bs:k:\mBbbN{}n {}\mrightarrow{} bag(A k). \mforall{}l:Id. \mforall{}b:bag(B).
((\mforall{}k:\mBbbN{}n. (\#(bs k) \mleq{} 1)) {}\mRightarrow{} (\#(b) \mleq{} 1) {}\mRightarrow{} (\#(F l bs b) \mleq{} 1))) and
(\mforall{}k:\mBbbN{}n. es-sv-class(es;Xs k)) and
(\mforall{}l:Id. (\#(init l) \mleq{} 1)))
By
Latex:
((UnivCD THENA MaAuto)
THEN Unfold `es-sv-class` 0
THEN VrCausalInd'
THEN RecUnfold `rec-comb` 0
THEN Reduce 0
THEN (BHyp (-3) THENA (Auto THEN Try (Fold `eclass` 0) THEN Auto))
THEN Try (Complete ((Reduce 0 THEN Auto)))
THEN (BLemma `primed-class-opt-es-sv0`\mcdot{} THENA Auto)
THEN Try (Complete ((BHyp (-5) THEN Auto)))
THEN Auto)
Home
Index