Nuprl Lemma : rec-combined-class-opt-1-single-val0
∀[Info,A,B:Type]. ∀[es:EO+(Info)]. ∀[F:A ⟶ B ⟶ B]. ∀[X:EClass(A)]. ∀[init:Id ⟶ bag(B)]. ∀[e:E]. ∀[v1,v2:B].
(v1 = v2 ∈ B) supposing
(v1 ∈ lifting-2(F)|X,Prior(self)?init|(e) and
v2 ∈ lifting-2(F)|X,Prior(self)?init|(e) and
single-valued-classrel(es;X;A) and
single-valued-bag(init loc(e);B))
Proof
Definitions occuring in Statement :
rec-combined-class-opt-1: F|X,Prior(self)?init|
,
single-valued-classrel: single-valued-classrel(es;X;T)
,
classrel: v ∈ X(e)
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-loc: loc(e)
,
es-E: E
,
Id: Id
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
,
lifting-2: lifting-2(f)
,
single-valued-bag: single-valued-bag(b;T)
,
bag: bag(T)
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
strongwellfounded: SWellFounded(R[x; y])
,
exists: ∃x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
not: ¬A
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
guard: {T}
,
decidable: Dec(P)
,
or: P ∨ Q
,
less_than: a < b
,
squash: ↓T
,
uiff: uiff(P;Q)
,
single-valued-classrel: single-valued-classrel(es;X;T)
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
es-p-local-pred: es-p-local-pred(es;P)
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
es-locl: (e <loc e')
,
single-valued-bag: single-valued-bag(b;T)
Latex:
\mforall{}[Info,A,B:Type]. \mforall{}[es:EO+(Info)]. \mforall{}[F:A {}\mrightarrow{} B {}\mrightarrow{} B]. \mforall{}[X:EClass(A)]. \mforall{}[init:Id {}\mrightarrow{} bag(B)]. \mforall{}[e:E].
\mforall{}[v1,v2:B].
(v1 = v2) supposing
(v1 \mmember{} lifting-2(F)|X,Prior(self)?init|(e) and
v2 \mmember{} lifting-2(F)|X,Prior(self)?init|(e) and
single-valued-classrel(es;X;A) and
single-valued-bag(init loc(e);B))
Date html generated:
2016_05_17-AM-09_30_04
Last ObjectModification:
2016_01_17-PM-11_09_43
Theory : classrel!lemmas
Home
Index