Step
*
1
2
1
of Lemma
rec-combined-loc-class-opt-1-es-sv
1. Info : Type
2. A : Type
3. es : EO+(Info)
4. F : Top
5. X : EClass(A)
6. init : Id ⟶ bag(Top)
7. ∀l:Id. (#(init l) ≤ 1)
8. es-sv-class(es;X)
9. bs : k:ℕ1 ⟶ bag((λx.A) k)@i
10. l : Id@i
11. b : bag(Top)@i
12. ∀k:ℕ1. (#(bs k) ≤ 1)@i
13. #(b) ≤ 1@i
14. #(bs 0) ≤ 1
15. #(bs 0) = 0 ∈ ℤ
⊢ #(⋃x∈bs 0.⋃x@0∈b.{F l x x@0}) ≤ 1
BY
{ ((InstLemma `bag-size-zero` [⌜A⌝;⌜bs 0⌝]⋅ THENA Auto)
THEN RWO "-1" 0
THEN (RWO "bag-combine-empty-left" 0 THENA Auto)
THEN Reduce 0
THEN Auto) }
Latex:
Latex:
1. Info : Type
2. A : Type
3. es : EO+(Info)
4. F : Top
5. X : EClass(A)
6. init : Id {}\mrightarrow{} bag(Top)
7. \mforall{}l:Id. (\#(init l) \mleq{} 1)
8. es-sv-class(es;X)
9. bs : k:\mBbbN{}1 {}\mrightarrow{} bag((\mlambda{}x.A) k)@i
10. l : Id@i
11. b : bag(Top)@i
12. \mforall{}k:\mBbbN{}1. (\#(bs k) \mleq{} 1)@i
13. \#(b) \mleq{} 1@i
14. \#(bs 0) \mleq{} 1
15. \#(bs 0) = 0
\mvdash{} \#(\mcup{}x\mmember{}bs 0.\mcup{}x@0\mmember{}b.\{F l x x@0\}) \mleq{} 1
By
Latex:
((InstLemma `bag-size-zero` [\mkleeneopen{}A\mkleeneclose{};\mkleeneopen{}bs 0\mkleeneclose{}]\mcdot{} THENA Auto)
THEN RWO "-1" 0
THEN (RWO "bag-combine-empty-left" 0 THENA Auto)
THEN Reduce 0
THEN Auto)
Home
Index