Nuprl Lemma : return-loc-bag-class-classrel
∀[Info,A:Type]. ∀[x:Id ⟶ bag(A)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:A].
  (v ∈ return-loc-bag-class(x)(e) ⇐⇒ v ↓∈ x loc(e) ∧ (↑first(e)))
Proof
Definitions occuring in Statement : 
return-loc-bag-class: return-loc-bag-class(x), 
classrel: v ∈ X(e), 
event-ordering+: EO+(Info), 
es-first: first(e), 
es-loc: loc(e), 
es-E: E, 
Id: Id, 
assert: ↑b, 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
bag-member: x ↓∈ bs, 
bag: bag(T)
Definitions unfolded in proof : 
return-loc-bag-class: return-loc-bag-class(x), 
classrel: v ∈ X(e), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
iff: P ⇐⇒ Q, 
true: True, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
false: False, 
bag-member: x ↓∈ bs, 
squash: ↓T
Latex:
\mforall{}[Info,A:Type].  \mforall{}[x:Id  {}\mrightarrow{}  bag(A)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].  \mforall{}[v:A].
    (v  \mmember{}  return-loc-bag-class(x)(e)  \mLeftarrow{}{}\mRightarrow{}  v  \mdownarrow{}\mmember{}  x  loc(e)  \mwedge{}  (\muparrow{}first(e)))
Date html generated:
2016_05_17-AM-09_13_08
Last ObjectModification:
2016_01_17-PM-11_15_04
Theory : classrel!lemmas
Home
Index