Step
*
of Lemma
simple-comb-1-classrel
∀[Info,B,C:Type]. ∀[f:B ⟶ C]. ∀[X:EClass(B)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:C].
uiff(v ∈ lifting-1(f)|X|(e);↓∃b:B. ((v = (f b) ∈ C) ∧ b ∈ X(e)))
BY
{ (Unfold `lifting-1` 0
THEN Unfold `simple-comb-1` 0
THEN Reduce 0
THEN (UnivCD THENA Auto)
THEN (InstLemma `simple-comb1-classrel` [⌜Info⌝; ⌜B⌝; ⌜C⌝; ⌜f⌝; ⌜X⌝; ⌜es⌝; ⌜e⌝; ⌜v⌝]⋅ THENA Auto)
THEN Unfold `simple-comb1` (-1)
THEN Auto
THEN Try ((Using [`n',⌜1⌝;`A',⌜λn.[B][n]⌝] MemCD⋅ THEN MaAuto))) }
Latex:
Latex:
\mforall{}[Info,B,C:Type]. \mforall{}[f:B {}\mrightarrow{} C]. \mforall{}[X:EClass(B)]. \mforall{}[es:EO+(Info)]. \mforall{}[e:E]. \mforall{}[v:C].
uiff(v \mmember{} lifting-1(f)|X|(e);\mdownarrow{}\mexists{}b:B. ((v = (f b)) \mwedge{} b \mmember{} X(e)))
By
Latex:
(Unfold `lifting-1` 0
THEN Unfold `simple-comb-1` 0
THEN Reduce 0
THEN (UnivCD THENA Auto)
THEN (InstLemma `simple-comb1-classrel` [\mkleeneopen{}Info\mkleeneclose{}; \mkleeneopen{}B\mkleeneclose{}; \mkleeneopen{}C\mkleeneclose{}; \mkleeneopen{}f\mkleeneclose{}; \mkleeneopen{}X\mkleeneclose{}; \mkleeneopen{}es\mkleeneclose{}; \mkleeneopen{}e\mkleeneclose{}; \mkleeneopen{}v\mkleeneclose{}]\mcdot{} THENA Auto)
THEN Unfold `simple-comb1` (-1)
THEN Auto
THEN Try ((Using [`n',\mkleeneopen{}1\mkleeneclose{};`A',\mkleeneopen{}\mlambda{}n.[B][n]\mkleeneclose{}] MemCD\mcdot{} THEN MaAuto)))
Home
Index