Nuprl Lemma : simple-comb-1-concat-classrel
∀[Info,B,C:Type]. ∀[f:B ⟶ bag(C)]. ∀[X:EClass(B)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:C].
  uiff(v ∈ f@|X|(e);↓∃b:B. (v ↓∈ f b ∧ b ∈ X(e)))
Proof
Definitions occuring in Statement : 
simple-comb-1: F|X|, 
classrel: v ∈ X(e), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-E: E, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
exists: ∃x:A. B[x], 
squash: ↓T, 
and: P ∧ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
concat-lifting-1: f@, 
bag-member: x ↓∈ bs, 
bag: bag(T)
Definitions unfolded in proof : 
concat-lifting-1: f@, 
simple-comb-1: F|X|, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
simple-comb1: λx.F[x]|X|, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
squash: ↓T, 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
prop: ℙ, 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
int_seg: {i..j-}, 
guard: {T}, 
lelt: i ≤ j < k, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
sq_type: SQType(T), 
select: L[n], 
cons: [a / b], 
less_than: a < b, 
true: True, 
subtype_rel: A ⊆r B, 
classrel: v ∈ X(e), 
bag-member: x ↓∈ bs, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Latex:
\mforall{}[Info,B,C:Type].  \mforall{}[f:B  {}\mrightarrow{}  bag(C)].  \mforall{}[X:EClass(B)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].  \mforall{}[v:C].
    uiff(v  \mmember{}  f@|X|(e);\mdownarrow{}\mexists{}b:B.  (v  \mdownarrow{}\mmember{}  f  b  \mwedge{}  b  \mmember{}  X(e)))
Date html generated:
2016_05_17-AM-09_20_37
Last ObjectModification:
2016_01_17-PM-11_12_29
Theory : classrel!lemmas
Home
Index