Nuprl Lemma : simple-comb-1-disjoint-classrel
∀[Info,T,A,B:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(A)]. ∀[Y:EClass(B)]. ∀[f:A ⟶ T].
  (disjoint-classrel(es;A;X;B;Y) ⇒ disjoint-classrel(es;T;lifting-1(f)|X|;B;Y))
Proof
Definitions occuring in Statement : 
simple-comb-1: F|X|, 
disjoint-classrel: disjoint-classrel(es;A;X;B;Y), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type, 
lifting-1: lifting-1(f)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
disjoint-classrel: disjoint-classrel(es;A;X;B;Y), 
all: ∀x:A. B[x], 
member: t ∈ T, 
or: P ∨ Q, 
not: ¬A, 
false: False, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
squash: ↓T, 
exists: ∃x:A. B[x], 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
guard: {T}, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Latex:
\mforall{}[Info,T,A,B:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].  \mforall{}[f:A  {}\mrightarrow{}  T].
    (disjoint-classrel(es;A;X;B;Y)  {}\mRightarrow{}  disjoint-classrel(es;T;lifting-1(f)|X|;B;Y))
Date html generated:
2016_05_17-AM-09_33_53
Last ObjectModification:
2015_12_29-PM-03_59_29
Theory : classrel!lemmas
Home
Index