Nuprl Lemma : simple-comb-1-es-sv
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[A,B:Type]. ∀[F:A ⟶ B]. ∀[X:EClass(A)].
  es-sv-class(es;lifting-1(F)|X|) supposing es-sv-class(es;X)
Proof
Definitions occuring in Statement : 
simple-comb-1: F|X|, 
es-sv-class: es-sv-class(es;X), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
function: x:A ⟶ B[x], 
universe: Type, 
lifting-1: lifting-1(f)
Definitions unfolded in proof : 
es-sv-class: es-sv-class(es;X), 
all: ∀x:A. B[x], 
member: t ∈ T, 
lifting-1: lifting-1(f), 
simple-comb-1: F|X|, 
lifting1: lifting1(f;b), 
simple-comb: simple-comb(F;Xs), 
select: L[n], 
cons: [a / b], 
lifting-gen-rev: lifting-gen-rev(n;f;bags), 
lifting-gen-list-rev: lifting-gen-list-rev(n;bags), 
eq_int: (i =z j), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
btrue: tt, 
uall: ∀[x:A]. B[x], 
eclass: EClass(A[eo; e]), 
subtype_rel: A ⊆r B, 
nat: ℕ, 
implies: P ⇒ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
guard: {T}, 
prop: ℙ, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
le: A ≤ B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
less_than': less_than'(a;b), 
cand: A c∧ B
Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[A,B:Type].  \mforall{}[F:A  {}\mrightarrow{}  B].  \mforall{}[X:EClass(A)].
    es-sv-class(es;lifting-1(F)|X|)  supposing  es-sv-class(es;X)
Date html generated:
2016_05_17-AM-09_29_45
Last ObjectModification:
2016_01_17-PM-11_09_14
Theory : classrel!lemmas
Home
Index