Nuprl Lemma : simple-comb1-concat-classrel
∀[Info,B,C:Type]. ∀[f:B ⟶ bag(C)]. ∀[X:EClass(B)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:C].
uiff(v ∈ λa.concat-lifting1(f;a)|X|(e);↓∃b:B. (b ∈ X(e) ∧ v ↓∈ f b))
Proof
Definitions occuring in Statement :
simple-comb1: λx.F[x]|X|
,
classrel: v ∈ X(e)
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-E: E
,
uiff: uiff(P;Q)
,
uall: ∀[x:A]. B[x]
,
exists: ∃x:A. B[x]
,
squash: ↓T
,
and: P ∧ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
,
concat-lifting1: concat-lifting1(f;bag)
,
bag-member: x ↓∈ bs
,
bag: bag(T)
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
nat: ℕ
,
le: A ≤ B
,
and: P ∧ Q
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
implies: P
⇒ Q
,
prop: ℙ
,
int_seg: {i..j-}
,
uimplies: b supposing a
,
guard: {T}
,
lelt: i ≤ j < k
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
top: Top
,
sq_type: SQType(T)
,
select: L[n]
,
cons: [a / b]
,
less_than: a < b
,
squash: ↓T
,
true: True
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
uiff: uiff(P;Q)
,
classrel: v ∈ X(e)
,
bag-member: x ↓∈ bs
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
concat-lifting1: concat-lifting1(f;bag)
,
concat-lifting: concat-lifting(n;f;bags)
,
concat-lifting-list: concat-lifting-list(n;bags)
,
lifting-gen-list-rev: lifting-gen-list-rev(n;bags)
,
eq_int: (i =z j)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
btrue: tt
,
cand: A c∧ B
,
rev_uimplies: rev_uimplies(P;Q)
,
simple-comb1: λx.F[x]|X|
Latex:
\mforall{}[Info,B,C:Type]. \mforall{}[f:B {}\mrightarrow{} bag(C)]. \mforall{}[X:EClass(B)]. \mforall{}[es:EO+(Info)]. \mforall{}[e:E]. \mforall{}[v:C].
uiff(v \mmember{} \mlambda{}a.concat-lifting1(f;a)|X|(e);\mdownarrow{}\mexists{}b:B. (b \mmember{} X(e) \mwedge{} v \mdownarrow{}\mmember{} f b))
Date html generated:
2016_05_17-AM-09_19_44
Last ObjectModification:
2016_01_17-PM-11_15_19
Theory : classrel!lemmas
Home
Index