Nuprl Lemma : simple-loc-comb-2-loc-bounded3
∀[Info,A,B,C:Type]. ∀[f:Id ⟶ A ⟶ B ⟶ C]. ∀[X:EClass(A)]. ∀[Y:EClass(B)].
(LocBounded(B;Y)
⇒ LocBounded(C;lifting-loc-2(f) o (Loc,X, Y)))
Proof
Definitions occuring in Statement :
lifting-loc-2: lifting-loc-2(f)
,
simple-loc-comb-2: F o (Loc,X, Y)
,
loc-bounded-class: LocBounded(T;X)
,
eclass: EClass(A[eo; e])
,
Id: Id
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
loc-bounded-class: LocBounded(T;X)
,
class-loc-bound: class-loc-bound{i:l}(Info;T;X;L)
,
exists: ∃x:A. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
squash: ↓T
,
subtype_rel: A ⊆r B
,
sq_stable: SqStable(P)
,
bag-member: x ↓∈ bs
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
Latex:
\mforall{}[Info,A,B,C:Type]. \mforall{}[f:Id {}\mrightarrow{} A {}\mrightarrow{} B {}\mrightarrow{} C]. \mforall{}[X:EClass(A)]. \mforall{}[Y:EClass(B)].
(LocBounded(B;Y) {}\mRightarrow{} LocBounded(C;lifting-loc-2(f) o (Loc,X, Y)))
Date html generated:
2016_05_17-AM-09_18_49
Last ObjectModification:
2016_01_17-PM-11_12_59
Theory : classrel!lemmas
Home
Index