Step
*
1
2
of Lemma
simple-loc-comb1-classrel
1. Info : Type
2. B : Type
3. C : Type
4. f : Id ⟶ B ⟶ C
5. X : EClass(B)
6. es : EO+(Info)
7. e : E
8. v : C
9. uiff(v ∈ λl,w. lifting1-loc(f;l;w 0)|Loc; λ2k.[X][k]|(e);↓∃vs:k:ℕ1 ⟶ [B][k]
((∀k:ℕ1. vs[k] ∈ [X][k](e))
∧ (v = ((λx,vs. (f x (vs 0))) loc(e) vs) ∈ C)))
⊢ uiff(v ∈ simple-loc-comb1(l,a.lifting1-loc(f;l;a);X)(e);↓∃b:B. (b ∈ X(e) ∧ (v = (f loc(e) b) ∈ C)))
BY
{ (RepUR ``simple-loc-comb1`` 0⋅
THEN \p. Assert (mk_simple_term `uiff` [subtermn 2 (clause_type (-1) p); subtermn 2 (concl p)]) p⋅
THEN Reduce 0
THEN (All (RepUR ``so_lambda so_apply``)
THEN D 0
THEN D 0
THEN Try ((RepeatFor 2 (ThinTrivial) THEN Trivial))
THEN (Auto THEN Auto')⋅)⋅) }
1
1. Info : Type
2. B : Type
3. C : Type
4. f : Id ⟶ B ⟶ C
5. X : EClass(B)
6. es : EO+(Info)
7. e : E
8. v : C
9. ∃vs:k:ℕ1 ⟶ [B][k]. ((∀k:ℕ1. vs k ∈ [X][k](e)) ∧ (v = (f loc(e) (vs 0)) ∈ C))
10. v ∈ λl,w. lifting1-loc(f;l;w 0)|Loc; λk.[X][k]|(e)
11. ∃vs:k:ℕ1 ⟶ [B][k]. ((∀k:ℕ1. vs k ∈ [X][k](e)) ∧ (v = (f loc(e) (vs 0)) ∈ C))
⊢ ↓∃b:B. (b ∈ X(e) ∧ (v = (f loc(e) b) ∈ C))
2
1. Info : Type
2. B : Type
3. C : Type
4. f : Id ⟶ B ⟶ C
5. X : EClass(B)
6. es : EO+(Info)
7. e : E
8. v : C
9. ↓∃vs:k:ℕ1 ⟶ [B][k]. ((∀k:ℕ1. vs k ∈ [X][k](e)) ∧ (v = (f loc(e) (vs 0)) ∈ C))
supposing v ∈ λl,w. lifting1-loc(f;l;w 0)|Loc; λk.[X][k]|(e)
10. v ∈ λl,w. lifting1-loc(f;l;w 0)|Loc; λk.[X][k]|(e)
supposing ↓∃vs:k:ℕ1 ⟶ [B][k]. ((∀k:ℕ1. vs k ∈ [X][k](e)) ∧ (v = (f loc(e) (vs 0)) ∈ C))
11. ∃b:B. (b ∈ X(e) ∧ (v = (f loc(e) b) ∈ C))
⊢ ↓∃vs:k:ℕ1 ⟶ [B][k]. ((∀k:ℕ1. vs k ∈ [X][k](e)) ∧ (v = (f loc(e) (vs 0)) ∈ C))
3
1. Info : Type
2. B : Type
3. C : Type
4. f : Id ⟶ B ⟶ C
5. X : EClass(B)
6. es : EO+(Info)
7. e : E
8. v : C
9. ↓∃vs:k:ℕ1 ⟶ [B][k]. ((∀k:ℕ1. vs k ∈ [X][k](e)) ∧ (v = (f loc(e) (vs 0)) ∈ C))
supposing v ∈ λl,w. lifting1-loc(f;l;w 0)|Loc; λk.[X][k]|(e)
10. v ∈ λl,w. lifting1-loc(f;l;w 0)|Loc; λk.[X][k]|(e)
supposing ↓∃vs:k:ℕ1 ⟶ [B][k]. ((∀k:ℕ1. vs k ∈ [X][k](e)) ∧ (v = (f loc(e) (vs 0)) ∈ C))
11. ↓∃b:B. (b ∈ X(e) ∧ (v = (f loc(e) b) ∈ C))
supposing ↓∃vs:k:ℕ1 ⟶ [B][k]. ((∀k:ℕ1. vs k ∈ [X][k](e)) ∧ (v = (f loc(e) (vs 0)) ∈ C))
12. ↓∃vs:k:ℕ1 ⟶ [B][k]. ((∀k:ℕ1. vs k ∈ [X][k](e)) ∧ (v = (f loc(e) (vs 0)) ∈ C))
supposing ↓∃b:B. (b ∈ X(e) ∧ (v = (f loc(e) b) ∈ C))
⊢ λl,w. lifting1-loc(f;l;w 0)|Loc; λz.[X][z]| ∈ EClass(C)
Latex:
Latex:
1. Info : Type
2. B : Type
3. C : Type
4. f : Id {}\mrightarrow{} B {}\mrightarrow{} C
5. X : EClass(B)
6. es : EO+(Info)
7. e : E
8. v : C
9. uiff(v \mmember{} \mlambda{}l,w. lifting1-loc(f;l;w 0)|Loc; \mlambda{}\msubtwo{}k.[X][k]|(e);\mdownarrow{}\mexists{}vs:k:\mBbbN{}1 {}\mrightarrow{} [B][k]
((\mforall{}k:\mBbbN{}1. vs[k] \mmember{} [X][k](e))
\mwedge{} (v = ((\mlambda{}x,vs. (f x (vs 0))) loc(e) vs)))\000C)
\mvdash{} uiff(v \mmember{} simple-loc-comb1(l,a.lifting1-loc(f;l;a);X)(e);\mdownarrow{}\mexists{}b:B. (b \mmember{} X(e) \mwedge{} (v = (f loc(e) b))))
By
Latex:
(RepUR ``simple-loc-comb1`` 0\mcdot{}
THEN \mbackslash{}p. Assert (mk\_simple\_term `uiff` [subtermn 2 (clause\_type (-1) p); subtermn 2 (concl p)]) p\mcdot{}
THEN Reduce 0
THEN (All (RepUR ``so\_lambda so\_apply``)
THEN D 0
THEN D 0
THEN Try ((RepeatFor 2 (ThinTrivial) THEN Trivial))
THEN (Auto THEN Auto')\mcdot{})\mcdot{})
Home
Index