Step
*
1
of Lemma
state-class1-prior
1. Info : Type
2. A : Type
3. B : Type
4. init : Id ⟶ B
5. f : Id ⟶ A ⟶ B ⟶ B
6. X : EClass(A)
7. es : EO+(Info)
8. e : E
9. ¬↑first(e)
10. x : E@i
11. (x <loc e)@i
12. ↑0 <z #(state-class1(init;f;X)(x))@i
13. ∀e'':E. ((x <loc e'')
⇒ (e'' <loc e)
⇒ (¬↑0 <z #(state-class1(init;f;X)(e''))))@i
⊢ state-class1(init;f;X)(x) = state-class1(init;f;X)(pred(e)) ∈ bag(B)
BY
{ (InstLemma `es-pred_property` [⌜es⌝;⌜e⌝]⋅
THEN Auto
THEN (InstHyp [⌜x⌝] (-1)⋅ THENA Auto)
THEN DProdsAndUnions
THEN Auto
THEN Assert ⌜False⌝⋅
THEN Auto
THEN (InstHyp [⌜pred(e)⌝] (-5)⋅ THEN MaAuto)
THEN D (-1)
THEN (RW assert_pushdownC 0 THENA Auto)
THEN (BLemma `bag-size-bag-member` THENA Auto)
THEN RepUR ``class-ap`` 0
THEN Fold `classrel` 0
THEN BLemma `state-class1-exists`
THEN Auto) }
Latex:
Latex:
1. Info : Type
2. A : Type
3. B : Type
4. init : Id {}\mrightarrow{} B
5. f : Id {}\mrightarrow{} A {}\mrightarrow{} B {}\mrightarrow{} B
6. X : EClass(A)
7. es : EO+(Info)
8. e : E
9. \mneg{}\muparrow{}first(e)
10. x : E@i
11. (x <loc e)@i
12. \muparrow{}0 <z \#(state-class1(init;f;X)(x))@i
13. \mforall{}e'':E. ((x <loc e'') {}\mRightarrow{} (e'' <loc e) {}\mRightarrow{} (\mneg{}\muparrow{}0 <z \#(state-class1(init;f;X)(e''))))@i
\mvdash{} state-class1(init;f;X)(x) = state-class1(init;f;X)(pred(e))
By
Latex:
(InstLemma `es-pred\_property` [\mkleeneopen{}es\mkleeneclose{};\mkleeneopen{}e\mkleeneclose{}]\mcdot{}
THEN Auto
THEN (InstHyp [\mkleeneopen{}x\mkleeneclose{}] (-1)\mcdot{} THENA Auto)
THEN DProdsAndUnions
THEN Auto
THEN Assert \mkleeneopen{}False\mkleeneclose{}\mcdot{}
THEN Auto
THEN (InstHyp [\mkleeneopen{}pred(e)\mkleeneclose{}] (-5)\mcdot{} THEN MaAuto)
THEN D (-1)
THEN (RW assert\_pushdownC 0 THENA Auto)
THEN (BLemma `bag-size-bag-member` THENA Auto)
THEN RepUR ``class-ap`` 0
THEN Fold `classrel` 0
THEN BLemma `state-class1-exists`
THEN Auto)
Home
Index