Nuprl Lemma : lookup-list-map-isEmpty-prop
∀[Key,Value:Type]. ∀[deqKey:EqDecider(Key)]. ∀[m:lookup-list-map-type(Key;Value)].
(↑lookup-list-map-isEmpty(m)
⇐⇒ ∀k:Key. (¬↑lookup-list-map-inDom(deqKey;k;m)))
Proof
Definitions occuring in Statement :
lookup-list-map-isEmpty: lookup-list-map-isEmpty(m)
,
lookup-list-map-inDom: lookup-list-map-inDom(deqKey;key;m)
,
lookup-list-map-type: lookup-list-map-type(Key;Value)
,
deq: EqDecider(T)
,
assert: ↑b
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
not: ¬A
,
universe: Type
Definitions unfolded in proof :
lookup-list-map-type: lookup-list-map-type(Key;Value)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
,
prop: ℙ
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
not: ¬A
,
false: False
,
rev_implies: P
⇐ Q
,
lookup-list-map-inDom: lookup-list-map-inDom(deqKey;key;m)
,
lookup-list-map-isEmpty: lookup-list-map-isEmpty(m)
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
top: Top
,
so_apply: x[s1;s2;s3]
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
bfalse: ff
,
true: True
,
subtype_rel: A ⊆r B
,
listp: A List+
,
or: P ∨ Q
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
eqof: eqof(d)
Latex:
\mforall{}[Key,Value:Type]. \mforall{}[deqKey:EqDecider(Key)]. \mforall{}[m:lookup-list-map-type(Key;Value)].
(\muparrow{}lookup-list-map-isEmpty(m) \mLeftarrow{}{}\mRightarrow{} \mforall{}k:Key. (\mneg{}\muparrow{}lookup-list-map-inDom(deqKey;k;m)))
Date html generated:
2016_05_17-PM-01_51_10
Last ObjectModification:
2015_12_28-PM-08_50_43
Theory : datatype-signatures
Home
Index