Nuprl Lemma : singleton-nat-missing-prop
∀x,y:ℕ. (↑member-nat-missing(x;singleton-nat-missing(y))
⇐⇒ x = y ∈ ℕ)
Proof
Definitions occuring in Statement :
singleton-nat-missing: singleton-nat-missing(i)
,
member-nat-missing: member-nat-missing(i;s)
,
nat: ℕ
,
assert: ↑b
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
equal: s = t ∈ T
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
singleton-nat-missing: singleton-nat-missing(i)
,
pi1: fst(t)
,
pi2: snd(t)
,
not: ¬A
,
nat: ℕ
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
false: False
,
prop: ℙ
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
ge: i ≥ j
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
top: Top
,
rev_implies: P
⇐ Q
,
cand: A c∧ B
,
guard: {T}
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Latex:
\mforall{}x,y:\mBbbN{}. (\muparrow{}member-nat-missing(x;singleton-nat-missing(y)) \mLeftarrow{}{}\mRightarrow{} x = y)
Date html generated:
2016_05_17-PM-01_45_14
Last ObjectModification:
2016_01_17-AM-11_37_09
Theory : datatype-signatures
Home
Index