Nuprl Lemma : pi-run-example_wf
∀[P:pi_term()]. ∀[t:ℕ].
  (pi-run-example{$a,$b,$c,$d,$e,$f,$g,$h,$i,$j,$k}(P;t) ∈ {L:(ℤ × Id × Id × pMsg(P.piM(P))? × System(P.piM(P))) List| 
                                                            ||L|| = (t + 1) ∈ ℤ} )
Proof
Definitions occuring in Statement : 
pi-run-example: pi-run-example{$l_server,$l_choose,$l_comm,$l_pi,$a,$b,$c,$d,$e,$f,$g}(P;t), 
piM: piM(T), 
pi_term: pi_term(), 
System: System(P.M[P]), 
pMsg: pMsg(P.M[P]), 
Id: Id, 
length: ||as||, 
list: T List, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
unit: Unit, 
member: t ∈ T, 
set: {x:A| B[x]} , 
product: x:A × B[x], 
union: left + right, 
add: n + m, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
pi-run-example: pi-run-example{$l_server,$l_choose,$l_comm,$l_pi,$a,$b,$c,$d,$e,$f,$g}(P;t), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
piM: piM(T), 
all: ∀x:A. B[x], 
PiDataVal: PiDataVal(), 
subtype_rel: A ⊆r B, 
pMsg: pMsg(P.M[P]), 
mkid: "$x", 
Id: Id
Latex:
\mforall{}[P:pi\_term()].  \mforall{}[t:\mBbbN{}].
    (pi-run-example\{\$a,\$b,\$c,\$d,\$e,\$f,\$g,\$h,\$i,\$j,\$k\}(P;t)
      \mmember{}  \{L:(\mBbbZ{}  \mtimes{}  Id  \mtimes{}  Id  \mtimes{}  pMsg(P.piM(P))?  \mtimes{}  System(P.piM(P)))  List|  ||L||  =  (t  +  1)\}  )
Date html generated:
2016_05_17-AM-11_35_43
Last ObjectModification:
2015_12_29-PM-06_48_05
Theory : event-logic-applications
Home
Index