Nuprl Lemma : pi-trans_wf
∀[l_loc:Id]. ∀[P:pi_term()].  (pi-trans(l_loc;P) ∈ Id ⟶ Name ⟶ (Name List) ⟶ pi-process())
Proof
Definitions occuring in Statement : 
pi-trans: pi-trans(l_loc;P), 
pi-process: pi-process(), 
pi_term: pi_term(), 
Id: Id, 
name: Name, 
list: T List, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
guard: {T}, 
decidable: Dec(P), 
or: P ∨ Q, 
ext-eq: A ≡ B, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
sq_type: SQType(T), 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
pizero: pizero(), 
pi-rank: pi-rank(p), 
pi_term_ind: pi_term_ind(v;zero;pre,body,rec1....;left,right,rec2,rec3....;left,right,rec4,rec5....;body,rec6....;name,body,rec7....), 
pi-trans: pi-trans(l_loc;P), 
pizero?: pizero?(v), 
pi1: fst(t), 
pipar?: pipar?(v), 
pipar-left: pipar-left(v), 
pi2: snd(t), 
pipar-right: pipar-right(v), 
pirep?: pirep?(v), 
pirep-body: pirep-body(v), 
pinew?: pinew?(v), 
pinew-name: pinew-name(v), 
pinew-body: pinew-body(v), 
pioption?: pioption?(v), 
picomm?: picomm?(v), 
bfalse: ff, 
bnot: ¬bb, 
assert: ↑b, 
picomm: picomm(pre;body), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
pioption: pioption(left;right), 
pipar: pipar(left;right), 
let: let, 
less_than: a < b, 
squash: ↓T, 
pirep: pirep(body), 
pinew: pinew(name;body), 
iff: P ⇐⇒ Q, 
le: A ≤ B, 
less_than': less_than'(a;b)
Latex:
\mforall{}[l$_{loc}$:Id].  \mforall{}[P:pi\_term()].    (pi-trans(l$_{loc}$;P)  \mmember{}  I\000Cd  {}\mrightarrow{}  Name  {}\mrightarrow{}  (Name  List)  {}\mrightarrow{}  pi-process())
Date html generated:
2016_05_17-AM-11_35_14
Last ObjectModification:
2016_01_18-AM-07_48_05
Theory : event-logic-applications
Home
Index