Step
*
of Lemma
processComm_wf2
∀[l_comm,l_choose:Id]. (processComm(l_comm;l_choose) ∈ pi-process())
BY
{ (((Using [`S',⌜Comm-state()⌝] ProveWfLemma⋅ THEN (Assert ⌜"msg"×PiDataVal() ⊆r (Com(T.piM(T)) cSt)⌝⋅ THEN Auto)⋅)
THEN All Thin
)
THEN RepUR ``Comm-output Com piM`` 0
) }
1
1. cSt : Type
⊢ "msg"×PiDataVal() ⊆r "msg":PiDataVal() |+ "create":cSt |+ "choose":Id |+ "new":Unit
Latex:
Latex:
\mforall{}[l$_{comm}$,l$_{choose}$:Id]. (processComm(l$_\mbackslash{}ff7\000Cbcomm}$;l$_{choose}$) \mmember{} pi-process())
By
Latex:
(((Using [`S',\mkleeneopen{}Comm-state()\mkleeneclose{}] ProveWfLemma\mcdot{}
THEN (Assert \mkleeneopen{}"msg"\mtimes{}PiDataVal() \msubseteq{}r (Com(T.piM(T)) cSt)\mkleeneclose{}\mcdot{} THEN Auto)\mcdot{}
)
THEN All Thin
)
THEN RepUR ``Comm-output Com piM`` 0
)
Home
Index