Step
*
of Lemma
rec-process_wf_pi_simple_state
∀[S:Type]. ∀[s0:S]. ∀[next:⋂T:{T:Type| pi-process() ⊆r T} . (S ⟶ piM(T) ⟶ (S × LabeledDAG(Id × (Com(T.piM(T)) T))))].
(RecProcess(s0;s,m.next[s;m]) ∈ pi-process())
BY
{ (Auto THEN Using [`S',⌜λ2T.S⌝] (BLemma `rec-process_wf_pi`)⋅ THEN Auto) }
Latex:
Latex:
\mforall{}[S:Type]. \mforall{}[s0:S]. \mforall{}[next:\mcap{}T:\{T:Type| pi-process() \msubseteq{}r T\}
(S {}\mrightarrow{} piM(T) {}\mrightarrow{} (S \mtimes{} LabeledDAG(Id \mtimes{} (Com(T.piM(T)) T))))].
(RecProcess(s0;s,m.next[s;m]) \mmember{} pi-process())
By
Latex:
(Auto THEN Using [`S',\mkleeneopen{}\mlambda{}\msubtwo{}T.S\mkleeneclose{}] (BLemma `rec-process\_wf\_pi`)\mcdot{} THEN Auto)
Home
Index