Nuprl Lemma : Q-R-glued-first
∀[Info:Type]
∀es:EO+(Info)
∀[Q,R:E ⟶ E ⟶ ℙ]. ∀[A,B:Type].
∀Ias:EClass(A) List. ∀Ibs:EClass(B) List. ∀f:E(first-class(Ias)) ⟶ B.
((∀i:ℕ||Ias||. Ias[i]:Q →─f⟶ Ibs[i]:R)
⇒ first-class(Ias):Q →─f⟶ first-class(Ibs):R
supposing (∀Ia1,Ia2∈Ias. ∀e,e':E.
((¬(Q e e')) ∧ (¬(Q e' e))) supposing ((↑e' ∈b Ia2) and (↑e ∈b Ia1)))) supposi\000Cng
((||Ias|| = ||Ibs|| ∈ ℤ) and
(∀Ib1,Ib2∈Ibs. Ib1 ⋂ Ib2 = 0) and
(∀Ia1,Ia2∈Ias. Ia1 ⋂ Ia2 = 0))
Proof
Definitions occuring in Statement :
Q-R-glued: Ia:Qa →─f⟶ Ib:Rb
,
es-interface-disjoint: X ⋂ Y = 0
,
es-E-interface: E(X)
,
first-class: first-class(L)
,
in-eclass: e ∈b X
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-E: E
,
pairwise: (∀x,y∈L. P[x; y])
,
select: L[n]
,
length: ||as||
,
list: T List
,
int_seg: {i..j-}
,
assert: ↑b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
all: ∀x:A. B[x]
,
not: ¬A
,
implies: P
⇒ Q
,
and: P ∧ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
natural_number: $n
,
int: ℤ
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
so_lambda: λ2x y.t[x; y]
,
subtype_rel: A ⊆r B
,
so_apply: x[s1;s2]
,
so_lambda: λ2x.t[x]
,
uimplies: b supposing a
,
top: Top
,
prop: ℙ
,
implies: P
⇒ Q
,
int_seg: {i..j-}
,
guard: {T}
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
not: ¬A
,
so_apply: x[s]
,
pairwise: (∀x,y∈L. P[x; y])
,
select: L[n]
,
nil: []
,
it: ⋅
,
es-interface-disjoint: X ⋂ Y = 0
,
cons: [a / b]
,
ge: i ≥ j
,
le: A ≤ B
,
first-class: first-class(L)
,
less_than: a < b
,
squash: ↓T
,
uiff: uiff(P;Q)
,
iff: P
⇐⇒ Q
,
subtract: n - m
,
less_than': less_than'(a;b)
,
nat_plus: ℕ+
,
true: True
,
cand: A c∧ B
,
rel_equivalent: R1
⇐⇒ R2
,
es-interface-predicate: {I}
,
rel-restriction: R|P
,
rel_or: R1 ∨ R2
,
infix_ap: x f y
,
es-E-interface: E(X)
,
rev_implies: P
⇐ Q
,
Q-R-glued: Ia:Qa →─f⟶ Ib:Rb
Latex:
\mforall{}[Info:Type]
\mforall{}es:EO+(Info)
\mforall{}[Q,R:E {}\mrightarrow{} E {}\mrightarrow{} \mBbbP{}]. \mforall{}[A,B:Type].
\mforall{}Ias:EClass(A) List. \mforall{}Ibs:EClass(B) List. \mforall{}f:E(first-class(Ias)) {}\mrightarrow{} B.
((\mforall{}i:\mBbbN{}||Ias||. Ias[i]:Q \mrightarrow{}{}f{}\mrightarrow{} Ibs[i]:R)
{}\mRightarrow{} first-class(Ias):Q \mrightarrow{}{}f{}\mrightarrow{} first-class(Ibs):R
supposing (\mforall{}Ia1,Ia2\mmember{}Ias. \mforall{}e,e':E.
((\mneg{}(Q e e')) \mwedge{} (\mneg{}(Q e' e))) supposing
((\muparrow{}e' \mmember{}\msubb{} Ia2) and
(\muparrow{}e \mmember{}\msubb{} Ia1)))) supposing
((||Ias|| = ||Ibs||) and
(\mforall{}Ib1,Ib2\mmember{}Ibs. Ib1 \mcap{} Ib2 = 0) and
(\mforall{}Ia1,Ia2\mmember{}Ias. Ia1 \mcap{} Ia2 = 0))
Date html generated:
2016_05_17-AM-07_57_26
Last ObjectModification:
2016_01_17-PM-03_08_50
Theory : event-ordering
Home
Index