Nuprl Lemma : Q-R-glues-conditional2
∀[Info:Type]
∀es:EO+(Info)
∀[Q1,Q2,R:E ⟶ E ⟶ ℙ]. ∀[A,B:Type].
∀Ia1,Ia2:EClass(A). ∀Ib1,Ib2:EClass(B). ∀f:E([Ia1?Ia2]) ⟶ B. ∀g1:E(Ib1) ⟶ E. ∀g2:E(Ib2) ⟶ E.
(g1 glues Ia1:Q1 ──f⟶ Ib1:R
⇒ g2 glues Ia2:Q2 ──f⟶ Ib2:R
⇒ [{Ib1}? g1 : g2] glues [Ia1?Ia2]:Q1|{Ia1} ∨ Q2|{Ia2} ──f⟶ [Ib1?Ib2]:R) supposing
(Ib1 ⋂ Ib2 = 0 and
Ia1 ⋂ Ia2 = 0)
Proof
Definitions occuring in Statement :
Q-R-glues: g glues Ia:Qa ──f⟶ Ib:Rb
,
es-interface-disjoint: X ⋂ Y = 0
,
es-E-interface: E(X)
,
es-interface-predicate: {I}
,
cond-class: [X?Y]
,
in-eclass: e ∈b X
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
conditional: [P? f : g]
,
es-E: E
,
rel-restriction: R|P
,
rel_or: R1 ∨ R2
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
lambda: λx.A[x]
,
function: x:A ⟶ B[x]
,
universe: Type
,
bool-decider: bool-decider(b)
Definitions unfolded in proof :
so_apply: x[s]
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
top: Top
,
so_apply: x[s1;s2]
,
so_lambda: λ2x y.t[x; y]
,
subtype_rel: A ⊆r B
,
and: P ∧ Q
,
false: False
,
implies: P
⇒ Q
,
not: ¬A
,
es-interface-disjoint: X ⋂ Y = 0
,
member: t ∈ T
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
Latex:
\mforall{}[Info:Type]
\mforall{}es:EO+(Info)
\mforall{}[Q1,Q2,R:E {}\mrightarrow{} E {}\mrightarrow{} \mBbbP{}]. \mforall{}[A,B:Type].
\mforall{}Ia1,Ia2:EClass(A). \mforall{}Ib1,Ib2:EClass(B). \mforall{}f:E([Ia1?Ia2]) {}\mrightarrow{} B. \mforall{}g1:E(Ib1) {}\mrightarrow{} E.
\mforall{}g2:E(Ib2) {}\mrightarrow{} E.
(g1 glues Ia1:Q1 {}{}f{}\mrightarrow{} Ib1:R
{}\mRightarrow{} g2 glues Ia2:Q2 {}{}f{}\mrightarrow{} Ib2:R
{}\mRightarrow{} [\{Ib1\}? g1 : g2] glues [Ia1?Ia2]:Q1|\{Ia1\} \mvee{} Q2|\{Ia2\} {}{}f{}\mrightarrow{} [Ib1?Ib2]:R) supposing
(Ib1 \mcap{} Ib2 = 0 and
Ia1 \mcap{} Ia2 = 0)
Date html generated:
2016_05_17-AM-07_52_39
Last ObjectModification:
2015_12_28-PM-11_29_34
Theory : event-ordering
Home
Index