Nuprl Lemma : actof_wf
∀[k:Knd]. act(k) ∈ Id supposing ↑islocal(k)
Proof
Definitions occuring in Statement :
actof: act(k)
,
islocal: islocal(k)
,
Knd: Knd
,
Id: Id
,
assert: ↑b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
actof: act(k)
,
islocal: islocal(k)
,
Knd: Knd
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
prop: ℙ
Latex:
\mforall{}[k:Knd]. act(k) \mmember{} Id supposing \muparrow{}islocal(k)
Date html generated:
2016_05_16-AM-10_54_57
Last ObjectModification:
2015_12_29-AM-09_08_02
Theory : event-ordering
Home
Index