Nuprl Lemma : assert-rcvd-inning-eq
∀[V:Type]
∀A:Id List. ∀r:consensus-rcv(V;A). ∀i:ℕ.
(↑inning(r) =z i
⇐⇒ ∃a:{b:Id| (b ∈ A)} . ∃v:V. (r = Vote[a;i;v] ∈ consensus-rcv(V;A)))
Proof
Definitions occuring in Statement :
rcvd-inning-eq: inning(r) =z i
,
cs-rcv-vote: Vote[a;i;v]
,
consensus-rcv: consensus-rcv(V;A)
,
Id: Id
,
l_member: (x ∈ l)
,
list: T List
,
nat: ℕ
,
assert: ↑b
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
iff: P
⇐⇒ Q
,
set: {x:A| B[x]}
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
consensus-rcv: consensus-rcv(V;A)
,
rcvd-inning-eq: inning(r) =z i
,
rcvd-vote: rcvd-vote(x)
,
rcv-vote?: rcv-vote?(x)
,
outr: outr(x)
,
bfalse: ff
,
band: p ∧b q
,
ifthenelse: if b then t else f fi
,
assert: ↑b
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
false: False
,
member: t ∈ T
,
prop: ℙ
,
rev_implies: P
⇐ Q
,
exists: ∃x:A. B[x]
,
so_lambda: λ2x.t[x]
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
so_apply: x[s]
,
spreadn: spread3,
btrue: tt
,
nat: ℕ
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
,
cs-rcv-vote: Vote[a;i;v]
,
isl: isl(x)
,
not: ¬A
,
squash: ↓T
,
ge: i ≥ j
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
top: Top
,
true: True
,
bnot: ¬bb
,
pi1: fst(t)
,
pi2: snd(t)
,
guard: {T}
Latex:
\mforall{}[V:Type]
\mforall{}A:Id List. \mforall{}r:consensus-rcv(V;A). \mforall{}i:\mBbbN{}.
(\muparrow{}inning(r) =\msubz{} i \mLeftarrow{}{}\mRightarrow{} \mexists{}a:\{b:Id| (b \mmember{} A)\} . \mexists{}v:V. (r = Vote[a;i;v]))
Date html generated:
2016_05_16-PM-00_34_54
Last ObjectModification:
2016_01_17-PM-03_56_16
Theory : event-ordering
Home
Index