Nuprl Lemma : consensus-accum-num-property1
∀[V:Type]
∀A:Id List. ∀t:ℕ+. ∀f:(V List) ⟶ V. ∀v0:V. ∀L:consensus-rcv(V;A) List.
let b,i,as,vs,v = consensus-accum-num-state(t;f;v0;L) in (filter(λr.i - 1 <z inning(r);L)
= []
∈ (consensus-rcv(V;A) List))
∧ (||as|| = ||vs|| ∈ ℤ)
∧ (zip(as;vs) = votes-from-inning(i - 1;L) ∈ (({b:Id| (b ∈ A)} × V) List))
∧ (0 ≤ i)
∧ 1 ≤ i supposing ¬↑null(L)
∧ (||values-for-distinct(IdDeq;votes-from-inning(i - 1;L))|| ≤ (2 * t))
Proof
Definitions occuring in Statement :
consensus-accum-num-state: consensus-accum-num-state(t;f;v0;L)
,
votes-from-inning: votes-from-inning(i;L)
,
rcvd-inning-gt: i <z inning(r)
,
consensus-rcv: consensus-rcv(V;A)
,
id-deq: IdDeq
,
Id: Id
,
values-for-distinct: values-for-distinct(eq;L)
,
zip: zip(as;bs)
,
l_member: (x ∈ l)
,
length: ||as||
,
null: null(as)
,
filter: filter(P;l)
,
nil: []
,
list: T List
,
nat_plus: ℕ+
,
assert: ↑b
,
spreadn: let a,b,c,d,e = u in v[a; b; c; d; e]
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
le: A ≤ B
,
all: ∀x:A. B[x]
,
not: ¬A
,
and: P ∧ Q
,
set: {x:A| B[x]}
,
lambda: λx.A[x]
,
function: x:A ⟶ B[x]
,
product: x:A × B[x]
,
multiply: n * m
,
subtract: n - m
,
natural_number: $n
,
int: ℤ
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
prop: ℙ
,
uimplies: b supposing a
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
implies: P
⇒ Q
,
spreadn: let a,b,c,d,e = u in v[a; b; c; d; e]
,
and: P ∧ Q
,
top: Top
,
nat_plus: ℕ+
,
consensus-accum-num-state: consensus-accum-num-state(t;f;v0;L)
,
list_accum: list_accum,
nil: []
,
it: ⋅
,
subtract: n - m
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
votes-from-inning: votes-from-inning(i;L)
,
values-for-distinct: values-for-distinct(eq;L)
,
cand: A c∧ B
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
true: True
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
consensus-rcv: consensus-rcv(V;A)
,
consensus-accum-num: consensus-accum-num(num;f;s;r)
,
cs-initial-rcv: Init[v]
,
spreadn: spread3,
let: let,
cs-rcv-vote: Vote[a;i;v]
,
guard: {T}
,
append: as @ bs
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
so_apply: x[s1;s2;s3]
,
rcvd-inning-eq: inning(r) =z i
,
rcvd-vote: rcvd-vote(x)
,
mapfilter: mapfilter(f;P;L)
,
rcv-vote?: rcv-vote?(x)
,
outr: outr(x)
,
bfalse: ff
,
band: p ∧b q
,
rcvd-inning-gt: i <z inning(r)
,
nat: ℕ
,
ge: i ≥ j
,
uiff: uiff(P;Q)
,
pi1: fst(t)
,
pi2: snd(t)
,
bool: 𝔹
,
unit: Unit
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
squash: ↓T
,
unzip: unzip(as)
,
Id: Id
,
sq_type: SQType(T)
Latex:
\mforall{}[V:Type]
\mforall{}A:Id List. \mforall{}t:\mBbbN{}\msupplus{}. \mforall{}f:(V List) {}\mrightarrow{} V. \mforall{}v0:V. \mforall{}L:consensus-rcv(V;A) List.
let b,i,as,vs,v = consensus-accum-num-state(t;f;v0;L) in (filter(\mlambda{}r.i - 1 <z inning(r);L) = [])
\mwedge{} (||as|| = ||vs||)
\mwedge{} (zip(as;vs) = votes-from-inning(i - 1;L))
\mwedge{} (0 \mleq{} i)
\mwedge{} 1 \mleq{} i supposing \mneg{}\muparrow{}null(L)
\mwedge{} (||values-for-distinct(IdDeq;votes-from-inning(i - 1;L))|| \mleq{} (2 * t))
Date html generated:
2016_05_16-PM-00_40_48
Last ObjectModification:
2016_01_17-PM-08_04_31
Theory : event-ordering
Home
Index