Nuprl Lemma : consensus-ts3-invariant1
∀[V:Type]. ∀[L:ts-reachable(consensus-ts3(V))]. ∀[v:V].
∀[v':V]. v' = v ∈ V supposing (CONSIDERING[v'] ∈ L) ∨ (COMMITED[v'] ∈ L)
supposing (CONSIDERING[v] ∈ L) ∨ (COMMITED[v] ∈ L)
Proof
Definitions occuring in Statement :
consensus-ts3: consensus-ts3(T)
,
cs-commited: COMMITED[v]
,
cs-considering: CONSIDERING[v]
,
consensus-state3: consensus-state3(T)
,
l_member: (x ∈ l)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
or: P ∨ Q
,
universe: Type
,
equal: s = t ∈ T
,
ts-reachable: ts-reachable(ts)
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
uimplies: b supposing a
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
ts-reachable: ts-reachable(ts)
,
so_lambda: λ2x.t[x]
,
infix_ap: x f y
,
so_apply: x[s]
,
ts-type: ts-type(ts)
,
pi1: fst(t)
,
consensus-ts3: consensus-ts3(T)
,
list: T List
,
or: P ∨ Q
,
ts-init: ts-init(ts)
,
pi2: snd(t)
,
nil: []
,
it: ⋅
,
guard: {T}
,
not: ¬A
,
false: False
,
ts-rel: ts-rel(ts)
,
and: P ∧ Q
,
exists: ∃x:A. B[x]
,
iff: P
⇐⇒ Q
,
l_member: (x ∈ l)
,
cand: A c∧ B
,
nat: ℕ
,
int_seg: {i..j-}
,
ge: i ≥ j
,
lelt: i ≤ j < k
,
decidable: Dec(P)
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
top: Top
,
le: A ≤ B
,
squash: ↓T
,
rev_implies: P
⇐ Q
,
uiff: uiff(P;Q)
,
less_than: a < b
,
sq_type: SQType(T)
,
less_than': less_than'(a;b)
,
true: True
,
cs-commited: COMMITED[v]
,
consensus-state3: consensus-state3(T)
,
outl: outl(x)
,
isl: isl(x)
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
cs-considering: CONSIDERING[v]
Latex:
\mforall{}[V:Type]. \mforall{}[L:ts-reachable(consensus-ts3(V))]. \mforall{}[v:V].
\mforall{}[v':V]. v' = v supposing (CONSIDERING[v'] \mmember{} L) \mvee{} (COMMITED[v'] \mmember{} L)
supposing (CONSIDERING[v] \mmember{} L) \mvee{} (COMMITED[v] \mmember{} L)
Date html generated:
2016_05_16-AM-11_52_20
Last ObjectModification:
2016_01_17-PM-03_53_33
Theory : event-ordering
Home
Index