Nuprl Lemma : eclass-val_wf
∀[T:Type]. ∀[A:es:EO+(T) ⟶ E ⟶ Type]. ∀[X:EClass(A[es;e])]. ∀[eo:EO+(T)]. ∀[e:E]. X(e) ∈ A[eo;e] supposing ↑e ∈b X
Proof
Definitions occuring in Statement :
eclass-val: X(e)
,
in-eclass: e ∈b X
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-E: E
,
assert: ↑b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s1;s2]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
top: Top
,
eclass-val: X(e)
,
in-eclass: e ∈b X
,
eclass: EClass(A[eo; e])
,
implies: P
⇒ Q
,
and: P ∧ Q
,
cand: A c∧ B
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
not: ¬A
,
nat: ℕ
,
uiff: uiff(P;Q)
Latex:
\mforall{}[T:Type]. \mforall{}[A:es:EO+(T) {}\mrightarrow{} E {}\mrightarrow{} Type]. \mforall{}[X:EClass(A[es;e])]. \mforall{}[eo:EO+(T)]. \mforall{}[e:E].
X(e) \mmember{} A[eo;e] supposing \muparrow{}e \mmember{}\msubb{} X
Date html generated:
2016_05_16-PM-02_19_12
Last ObjectModification:
2016_01_17-PM-07_35_05
Theory : event-ordering
Home
Index