Nuprl Lemma : eo-forward-E-subtype2
∀[Info:Type]. ∀[eo:EO+(Info)]. ∀[e:E]. ({e':E| (loc(e') = loc(e) ∈ Id)
⇒ e ≤loc e' } ⊆r E)
Proof
Definitions occuring in Statement :
eo-forward: eo.e
,
event-ordering+: EO+(Info)
,
es-le: e ≤loc e'
,
es-loc: loc(e)
,
es-E: E
,
Id: Id
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
set: {x:A| B[x]}
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
implies: P
⇒ Q
,
prop: ℙ
,
es-E: E
,
es-base-E: es-base-E(es)
,
es-dom: es-dom(es)
,
uimplies: b supposing a
,
sq_type: SQType(T)
,
all: ∀x:A. B[x]
,
guard: {T}
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
true: True
,
and: P ∧ Q
,
cand: A c∧ B
,
decidable: Dec(P)
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
not: ¬A
,
uiff: uiff(P;Q)
,
rev_implies: P
⇐ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
band: p ∧b q
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
bnot: ¬bb
,
false: False
Latex:
\mforall{}[Info:Type]. \mforall{}[eo:EO+(Info)]. \mforall{}[e:E]. (\{e':E| (loc(e') = loc(e)) {}\mRightarrow{} e \mleq{}loc e' \} \msubseteq{}r E)
Date html generated:
2016_05_16-PM-01_04_31
Last ObjectModification:
2015_12_29-PM-01_49_45
Theory : event-ordering
Home
Index