Nuprl Lemma : eo-strict-forward-E-subtype
∀[Info:Type]. ∀[eo:EO+(Info)]. ∀[e:E]. (E ⊆r E)
Proof
Definitions occuring in Statement :
eo-strict-forward: eo>e
,
event-ordering+: EO+(Info)
,
es-E: E
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
es-E: E
,
eo-strict-forward: eo>e
,
eo-restrict: eo-restrict(eo;P)
,
all: ∀x:A. B[x]
,
top: Top
,
eq_atom: x =a y
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
btrue: tt
,
es-dom: es-dom(es)
,
es-base-E: es-base-E(es)
,
subtype_rel: A ⊆r B
,
or: P ∨ Q
,
band: p ∧b q
,
assert: ↑b
,
true: True
,
false: False
,
prop: ℙ
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
Latex:
\mforall{}[Info:Type]. \mforall{}[eo:EO+(Info)]. \mforall{}[e:E]. (E \msubseteq{}r E)
Date html generated:
2016_05_16-PM-01_14_40
Last ObjectModification:
2015_12_29-PM-01_57_16
Theory : event-ordering
Home
Index