Nuprl Lemma : es-cut-induction-sq-stable
∀[Info:Type]
∀es:EO+(Info). ∀X:EClass(Top). ∀f:sys-antecedent(es;X).
∀[P:Cut(X;f) ⟶ ℙ]
((∀c:Cut(X;f). SqStable(P[c]))
⇒ P[{}]
⇒ (∀c:Cut(X;f). ∀e:E(X).
(P[c]
⇒ (P[c+e]) supposing (prior(X)(e) ∈ c supposing ↑e ∈b prior(X) and f e ∈ c supposing ¬((f e) = e ∈ E(X)))))
⇒ {∀c:Cut(X;f). P[c]})
Proof
Definitions occuring in Statement :
es-cut-add: c+e
,
es-cut: Cut(X;f)
,
es-prior-interface: prior(X)
,
sys-antecedent: sys-antecedent(es;Sys)
,
es-E-interface: E(X)
,
eclass-val: X(e)
,
in-eclass: e ∈b X
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-eq: es-eq(es)
,
empty-fset: {}
,
fset-member: a ∈ s
,
assert: ↑b
,
sq_stable: SqStable(P)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
top: Top
,
prop: ℙ
,
guard: {T}
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
not: ¬A
,
implies: P
⇒ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
guard: {T}
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
sys-antecedent: sys-antecedent(es;Sys)
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
top: Top
,
es-E-interface: E(X)
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
not: ¬A
,
decidable: Dec(P)
,
or: P ∨ Q
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
nat: ℕ
,
es-cut: Cut(X;f)
,
ge: i ≥ j
,
es-cut-add: c+e
,
fset-add: fset-add(eq;x;s)
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
sq_stable: SqStable(P)
,
squash: ↓T
,
cand: A c∧ B
,
sq_type: SQType(T)
,
uiff: uiff(P;Q)
,
true: True
,
rev_uimplies: rev_uimplies(P;Q)
,
fset-closed: (s closed under fs)
,
es-interface-pred: X-pred
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
fset: fset(T)
,
quotient: x,y:A//B[x; y]
,
fset-member: a ∈ s
,
assert: ↑b
Latex:
\mforall{}[Info:Type]
\mforall{}es:EO+(Info). \mforall{}X:EClass(Top). \mforall{}f:sys-antecedent(es;X).
\mforall{}[P:Cut(X;f) {}\mrightarrow{} \mBbbP{}]
((\mforall{}c:Cut(X;f). SqStable(P[c]))
{}\mRightarrow{} P[\{\}]
{}\mRightarrow{} (\mforall{}c:Cut(X;f). \mforall{}e:E(X).
(P[c]
{}\mRightarrow{} (P[c+e]) supposing
(prior(X)(e) \mmember{} c supposing \muparrow{}e \mmember{}\msubb{} prior(X) and
f e \mmember{} c supposing \mneg{}((f e) = e))))
{}\mRightarrow{} \{\mforall{}c:Cut(X;f). P[c]\})
Date html generated:
2016_05_17-AM-07_39_15
Last ObjectModification:
2016_01_17-PM-03_01_20
Theory : event-ordering
Home
Index