Nuprl Lemma : es-interface-extensionality
∀[Info,A:Type]. ∀[X,Y:EClass(A)].
(X = Y ∈ EClass(A)) supposing
((∀es:EO+(Info). ∀e:E. ((↑e ∈b X)
⇒ (↑e ∈b Y)
⇒ (X(e) = Y(e) ∈ A))) and
(∀es:EO+(Info). ∀e:E. (↑e ∈b X
⇐⇒ ↑e ∈b Y)) and
Singlevalued(X) and
Singlevalued(Y))
Proof
Definitions occuring in Statement :
sv-class: Singlevalued(X)
,
eclass-val: X(e)
,
in-eclass: e ∈b X
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-E: E
,
assert: ↑b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
eclass: EClass(A[eo; e])
,
subtype_rel: A ⊆r B
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
implies: P
⇒ Q
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
top: Top
,
so_apply: x[s]
,
guard: {T}
,
sv-class: Singlevalued(X)
,
in-eclass: e ∈b X
,
eclass-val: X(e)
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
iff: P
⇐⇒ Q
,
true: True
,
cand: A c∧ B
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
not: ¬A
,
bfalse: ff
,
sq_type: SQType(T)
,
bnot: ¬bb
,
nequal: a ≠ b ∈ T
,
nat: ℕ
,
rev_implies: P
⇐ Q
,
squash: ↓T
,
le: A ≤ B
Latex:
\mforall{}[Info,A:Type]. \mforall{}[X,Y:EClass(A)].
(X = Y) supposing
((\mforall{}es:EO+(Info). \mforall{}e:E. ((\muparrow{}e \mmember{}\msubb{} X) {}\mRightarrow{} (\muparrow{}e \mmember{}\msubb{} Y) {}\mRightarrow{} (X(e) = Y(e)))) and
(\mforall{}es:EO+(Info). \mforall{}e:E. (\muparrow{}e \mmember{}\msubb{} X \mLeftarrow{}{}\mRightarrow{} \muparrow{}e \mmember{}\msubb{} Y)) and
Singlevalued(X) and
Singlevalued(Y))
Date html generated:
2016_05_16-PM-02_32_03
Last ObjectModification:
2016_01_17-PM-07_37_44
Theory : event-ordering
Home
Index