Nuprl Lemma : es-interface-from-decidable
∀[Info:Type]. ∀[A:es:EO+(Info) ⟶ e:E ⟶ Type]. ∀[R:es:EO+(Info) ⟶ e:E ⟶ A[es;e] ⟶ ℙ].
((∀es:EO+(Info). ∀e:E. Dec(∃a:A[es;e]. R[es;e;a]))
⇒ (∃X:EClass(A[es;e]). ∀es:EO+(Info). ∀e:E. ((↑e ∈b X
⇐⇒ ∃a:A[es;e]. R[es;e;a]) ∧ R[es;e;X(e)] supposing ↑e ∈b X)))
Proof
Definitions occuring in Statement :
eclass-val: X(e)
,
in-eclass: e ∈b X
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-E: E
,
assert: ↑b
,
decidable: Dec(P)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s1;s2;s3]
,
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
,
and: P ∧ Q
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
subtype_rel: A ⊆r B
,
so_apply: x[s1;s2]
,
so_apply: x[s1;s2;s3]
,
so_apply: x[s]
,
eclass-val: X(e)
,
in-eclass: e ∈b X
,
eclass: EClass(A[eo; e])
,
exists: ∃x:A. B[x]
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
pi1: fst(t)
,
top: Top
,
eq_int: (i =z j)
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
and: P ∧ Q
,
cand: A c∧ B
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
true: True
,
uimplies: b supposing a
,
bfalse: ff
,
false: False
,
not: ¬A
,
nat: ℕ
,
uiff: uiff(P;Q)
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
Latex:
\mforall{}[Info:Type]. \mforall{}[A:es:EO+(Info) {}\mrightarrow{} e:E {}\mrightarrow{} Type]. \mforall{}[R:es:EO+(Info) {}\mrightarrow{} e:E {}\mrightarrow{} A[es;e] {}\mrightarrow{} \mBbbP{}].
((\mforall{}es:EO+(Info). \mforall{}e:E. Dec(\mexists{}a:A[es;e]. R[es;e;a]))
{}\mRightarrow{} (\mexists{}X:EClass(A[es;e])
\mforall{}es:EO+(Info). \mforall{}e:E.
((\muparrow{}e \mmember{}\msubb{} X \mLeftarrow{}{}\mRightarrow{} \mexists{}a:A[es;e]. R[es;e;a]) \mwedge{} R[es;e;X(e)] supposing \muparrow{}e \mmember{}\msubb{} X)))
Date html generated:
2016_05_16-PM-11_16_33
Last ObjectModification:
2016_01_17-PM-07_12_59
Theory : event-ordering
Home
Index