Nuprl Lemma : es-interface-le-pred-bool
ā[Info:Type]
āP:es:EO+(Info) ā¶ E ā¶ š¹
āX:EClass({e:E| ā(P es e)} )
āes:EO+(Info). āe:E.
((āe āb X
āā āa:E. (es-p-le-pred(es;Ī»e.(ā(P es e))) e a))
ā§ es-p-le-pred(es;Ī»e.(ā(P es e))) e X(e) supposing āe āb X)
Proof
Definitions occuring in Statement :
eclass-val: X(e)
,
in-eclass: e āb X
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-p-le-pred: es-p-le-pred(es;P)
,
es-E: E
,
assert: āb
,
bool: š¹
,
uimplies: b supposing a
,
uall: ā[x:A]. B[x]
,
all: āx:A. B[x]
,
exists: āx:A. B[x]
,
iff: P
āā Q
,
and: P ā§ Q
,
set: {x:A| B[x]}
,
apply: f a
,
lambda: λx.A[x]
,
function: x:A ā¶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ā[x:A]. B[x]
,
all: āx:A. B[x]
,
member: t ā T
,
subtype_rel: A ār B
,
implies: P
ā Q
,
exists: āx:A. B[x]
,
prop: ā
,
and: P ā§ Q
,
es-p-le-pred: es-p-le-pred(es;P)
,
iff: P
āā Q
,
cand: A cā§ B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
rev_implies: P
ā Q
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
uimplies: b supposing a
,
top: Top
,
eclass: EClass(A[eo; e])
,
eclass-val: X(e)
,
in-eclass: e āb X
Latex:
\mforall{}[Info:Type]
\mforall{}P:es:EO+(Info) {}\mrightarrow{} E {}\mrightarrow{} \mBbbB{}
\mexists{}X:EClass(\{e:E| \muparrow{}(P es e)\} )
\mforall{}es:EO+(Info). \mforall{}e:E.
((\muparrow{}e \mmember{}\msubb{} X \mLeftarrow{}{}\mRightarrow{} \mexists{}a:E. (es-p-le-pred(es;\mlambda{}e.(\muparrow{}(P es e))) e a))
\mwedge{} es-p-le-pred(es;\mlambda{}e.(\muparrow{}(P es e))) e X(e) supposing \muparrow{}e \mmember{}\msubb{} X)
Date html generated:
2016_05_16-PM-11_17_30
Last ObjectModification:
2015_12_29-AM-10_30_42
Theory : event-ordering
Home
Index