Nuprl Lemma : es-interface-le-pred-bool

āˆ€[Info:Type]
  āˆ€P:es:EO+(Info) āŸ¶ E āŸ¶ š”¹
    āˆƒX:EClass({e:E| ā†‘(P es e)} )
     āˆ€es:EO+(Info). āˆ€e:E.
       ((↑e āˆˆb ā‡ā‡’ āˆƒa:E. (es-p-le-pred(es;Ī»e.(↑(P es e))) a))
       āˆ§ es-p-le-pred(es;Ī»e.(↑(P es e))) X(e) supposing ā†‘e āˆˆb X)


Proof




Definitions occuring in Statement :  eclass-val: X(e) in-eclass: e āˆˆb X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-p-le-pred: es-p-le-pred(es;P) es-E: E assert: ↑b bool: š”¹ uimplies: supposing a uall: āˆ€[x:A]. B[x] all: āˆ€x:A. B[x] exists: ∃x:A. B[x] iff: ⇐⇒ Q and: P āˆ§ Q set: {x:A| B[x]}  apply: a lambda: Ī»x.A[x] function: x:A āŸ¶ B[x] universe: Type
Definitions unfolded in proof :  uall: āˆ€[x:A]. B[x] all: āˆ€x:A. B[x] member: t āˆˆ T subtype_rel: A āІB implies: ⇒ Q exists: ∃x:A. B[x] prop: ā„™ and: P āˆ§ Q es-p-le-pred: es-p-le-pred(es;P) iff: ⇐⇒ Q cand: c∧ B so_lambda: Ī»2x.t[x] so_apply: x[s] rev_implies: ⇐ Q so_lambda: Ī»2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a top: Top eclass: EClass(A[eo; e]) eclass-val: X(e) in-eclass: e āˆˆb X

Latex:
\mforall{}[Info:Type]
    \mforall{}P:es:EO+(Info)  {}\mrightarrow{}  E  {}\mrightarrow{}  \mBbbB{}
        \mexists{}X:EClass(\{e:E|  \muparrow{}(P  es  e)\}  )
          \mforall{}es:EO+(Info).  \mforall{}e:E.
              ((\muparrow{}e  \mmember{}\msubb{}  X  \mLeftarrow{}{}\mRightarrow{}  \mexists{}a:E.  (es-p-le-pred(es;\mlambda{}e.(\muparrow{}(P  es  e)))  e  a))
              \mwedge{}  es-p-le-pred(es;\mlambda{}e.(\muparrow{}(P  es  e)))  e  X(e)  supposing  \muparrow{}e  \mmember{}\msubb{}  X)



Date html generated: 2016_05_16-PM-11_17_30
Last ObjectModification: 2015_12_29-AM-10_30_42

Theory : event-ordering


Home Index