Nuprl Lemma : es-interface-predecessors-equal
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[X,Y:EClass(Top)].
∀[e:E]. (≤(X)(e) = ≤(Y)(e) ∈ (E(X) List)) supposing ∀e:E. (↑e ∈b X
⇐⇒ ↑e ∈b Y)
Proof
Definitions occuring in Statement :
es-interface-predecessors: ≤(X)(e)
,
es-E-interface: E(X)
,
in-eclass: e ∈b X
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-E: E
,
list: T List
,
assert: ↑b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
top: Top
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
iff: P
⇐⇒ Q
,
all: ∀x:A. B[x]
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
and: P ∧ Q
,
prop: ℙ
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
es-E-interface: E(X)
Latex:
\mforall{}[Info:Type]. \mforall{}[es:EO+(Info)]. \mforall{}[X,Y:EClass(Top)].
\mforall{}[e:E]. (\mleq{}(X)(e) = \mleq{}(Y)(e)) supposing \mforall{}e:E. (\muparrow{}e \mmember{}\msubb{} X \mLeftarrow{}{}\mRightarrow{} \muparrow{}e \mmember{}\msubb{} Y)
Date html generated:
2016_05_17-AM-06_54_44
Last ObjectModification:
2015_12_29-AM-00_17_26
Theory : event-ordering
Home
Index