Nuprl Lemma : es-interface-set-subtype
∀[Info,A:Type]. ∀[P:A ⟶ ℙ]. ∀[X:EClass(A)].
(X ∈ EClass({a:A| P[a]} )) supposing ((∀es:EO+(Info). ∀e:E(X). P[X(e)]) and Singlevalued(X))
Proof
Definitions occuring in Statement :
es-E-interface: E(X)
,
sv-class: Singlevalued(X)
,
eclass-val: X(e)
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
set: {x:A| B[x]}
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
eclass: EClass(A[eo; e])
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
top: Top
,
so_apply: x[s]
,
es-E-interface: E(X)
,
sq_type: SQType(T)
,
implies: P
⇒ Q
,
guard: {T}
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
true: True
,
sv-class: Singlevalued(X)
,
decidable: Dec(P)
,
or: P ∨ Q
,
eclass-val: X(e)
,
in-eclass: e ∈b X
,
and: P ∧ Q
,
cand: A c∧ B
,
nat: ℕ
,
uiff: uiff(P;Q)
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
not: ¬A
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
nequal: a ≠ b ∈ T
,
ge: i ≥ j
Latex:
\mforall{}[Info,A:Type]. \mforall{}[P:A {}\mrightarrow{} \mBbbP{}]. \mforall{}[X:EClass(A)].
(X \mmember{} EClass(\{a:A| P[a]\} )) supposing ((\mforall{}es:EO+(Info). \mforall{}e:E(X). P[X(e)]) and Singlevalued(X))
Date html generated:
2016_05_16-PM-10_23_31
Last ObjectModification:
2016_01_17-PM-07_31_56
Theory : event-ordering
Home
Index