Nuprl Lemma : es-le-interface-val
∀[Info:Type]
∀es:EO+(Info). ∀X:EClass(Top). ∀e:E.
le(X)(e) ≤loc e ∧ (↑le(X)(e) ∈b X) ∧ (∀e'':E. (e'' ≤loc e
⇒ (le(X)(e) <loc e'')
⇒ (¬↑e'' ∈b X)))
supposing ↑e ∈b le(X)
Proof
Definitions occuring in Statement :
es-le-interface: le(X)
,
eclass-val: X(e)
,
in-eclass: e ∈b X
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-le: e ≤loc e'
,
es-locl: (e <loc e')
,
es-E: E
,
assert: ↑b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
top: Top
,
all: ∀x:A. B[x]
,
not: ¬A
,
implies: P
⇒ Q
,
and: P ∧ Q
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
uimplies: b supposing a
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
top: Top
,
implies: P
⇒ Q
,
es-le-interface: le(X)
,
and: P ∧ Q
,
prop: ℙ
Latex:
\mforall{}[Info:Type]
\mforall{}es:EO+(Info). \mforall{}X:EClass(Top). \mforall{}e:E.
le(X)(e) \mleq{}loc e
\mwedge{} (\muparrow{}le(X)(e) \mmember{}\msubb{} X)
\mwedge{} (\mforall{}e'':E. (e'' \mleq{}loc e {}\mRightarrow{} (le(X)(e) <loc e'') {}\mRightarrow{} (\mneg{}\muparrow{}e'' \mmember{}\msubb{} X)))
supposing \muparrow{}e \mmember{}\msubb{} le(X)
Date html generated:
2016_05_16-PM-11_56_02
Last ObjectModification:
2015_12_29-AM-00_59_59
Theory : event-ordering
Home
Index