Nuprl Lemma : es-local-prior-state-induction
∀[Info,T:Type]. ∀[P:T ⟶ ℙ].
∀es:EO+(Info)
∀[A:Type]
∀X:EClass(A). ∀base:T. ∀f:T ⟶ A ⟶ T. ∀e:E.
(P[base]
⇒ (∀x:T. ∀e':E(X). ((e' <loc e)
⇒ P[x]
⇒ P[f x X(e')]))
⇒ P[prior-state(f;base;X;e)])
Proof
Definitions occuring in Statement :
es-local-prior-state: prior-state(f;base;X;e)
,
es-E-interface: E(X)
,
eclass-val: X(e)
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-locl: (e <loc e')
,
es-E: E
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
member: t ∈ T
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
prop: ℙ
,
so_apply: x[s]
,
so_lambda: λ2x.t[x]
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
top: Top
,
es-E-interface: E(X)
,
sq_type: SQType(T)
,
guard: {T}
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
true: True
,
es-local-prior-state: prior-state(f;base;X;e)
,
wellfounded: WellFnd{i}(A;x,y.R[x; y])
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
bfalse: ff
,
es-locl: (e <loc e')
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Latex:
\mforall{}[Info,T:Type]. \mforall{}[P:T {}\mrightarrow{} \mBbbP{}].
\mforall{}es:EO+(Info)
\mforall{}[A:Type]
\mforall{}X:EClass(A). \mforall{}base:T. \mforall{}f:T {}\mrightarrow{} A {}\mrightarrow{} T. \mforall{}e:E.
(P[base]
{}\mRightarrow{} (\mforall{}x:T. \mforall{}e':E(X). ((e' <loc e) {}\mRightarrow{} P[x] {}\mRightarrow{} P[f x X(e')]))
{}\mRightarrow{} P[prior-state(f;base;X;e)])
Date html generated:
2016_05_17-AM-07_09_24
Last ObjectModification:
2015_12_29-AM-00_10_38
Theory : event-ordering
Home
Index