Nuprl Lemma : es-prior-class-when_wf
∀[Info,A,B:Type]. ∀[X:EClass(A)]. ∀[Y:EClass(B)]. ∀[d:A]. ((X'?d) when Y ∈ EClass(B × A))
Proof
Definitions occuring in Statement :
es-prior-class-when: (X'?d) when Y
,
eclass: EClass(A[eo; e])
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
product: x:A × B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
es-prior-class-when: (X'?d) when Y
,
eclass: EClass(A[eo; e])
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
top: Top
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
false: False
Latex:
\mforall{}[Info,A,B:Type]. \mforall{}[X:EClass(A)]. \mforall{}[Y:EClass(B)]. \mforall{}[d:A]. ((X'?d) when Y \mmember{} EClass(B \mtimes{} A))
Date html generated:
2016_05_17-AM-07_18_30
Last ObjectModification:
2015_12_29-AM-00_00_48
Theory : event-ordering
Home
Index