Nuprl Lemma : es-prior-interface-val-unique2
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(Top)]. ∀[e:E].
∀[p:E]. (prior(X)(p) = prior(X)(e) ∈ E) supposing ((p <loc e) and (prior(X)(e) <loc p)) supposing ↑e ∈b prior(X)
Proof
Definitions occuring in Statement :
es-prior-interface: prior(X)
,
eclass-val: X(e)
,
in-eclass: e ∈b X
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-locl: (e <loc e')
,
es-E: E
,
assert: ↑b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
top: Top
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
es-E-interface: E(X)
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
top: Top
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
exists: ∃x:A. B[x]
,
cand: A c∧ B
,
guard: {T}
,
not: ¬A
,
false: False
,
decidable: Dec(P)
,
or: P ∨ Q
,
es-locl: (e <loc e')
Latex:
\mforall{}[Info:Type]. \mforall{}[es:EO+(Info)]. \mforall{}[X:EClass(Top)]. \mforall{}[e:E].
\mforall{}[p:E]. (prior(X)(p) = prior(X)(e)) supposing ((p <loc e) and (prior(X)(e) <loc p))
supposing \muparrow{}e \mmember{}\msubb{} prior(X)
Date html generated:
2016_05_16-PM-11_54_49
Last ObjectModification:
2015_12_29-AM-01_05_56
Theory : event-ordering
Home
Index