Nuprl Lemma : filter-interface-predecessors-lower-bound3
∀[Info:Type]
∀es:EO+(Info)
∀[T:Type]
∀X:EClass(T). ∀P:E(X) ⟶ 𝔹. ∀n:ℕ+. ∀f:ℕn ⟶ {e:E(X)| ↑P[e]} .
(∃e:{e:E(X)| ↑P[e]} . (n ≤ ||filter(λe.P[e];≤(X)(e))||)) supposing
((∀i,j:ℕn. (loc(f i) = loc(f j) ∈ Id)) and
Inj(ℕn;{e:E(X)| ↑P[e]} ;f))
Proof
Definitions occuring in Statement :
es-interface-predecessors: ≤(X)(e)
,
es-E-interface: E(X)
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-loc: loc(e)
,
Id: Id
,
length: ||as||
,
filter: filter(P;l)
,
inject: Inj(A;B;f)
,
int_seg: {i..j-}
,
nat_plus: ℕ+
,
assert: ↑b
,
bool: 𝔹
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
le: A ≤ B
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
set: {x:A| B[x]}
,
apply: f a
,
lambda: λx.A[x]
,
function: x:A ⟶ B[x]
,
natural_number: $n
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
uimplies: b supposing a
,
member: t ∈ T
,
inject: Inj(A;B;f)
,
implies: P
⇒ Q
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
top: Top
,
so_apply: x[s]
,
prop: ℙ
,
nat_plus: ℕ+
,
so_lambda: λ2x.t[x]
,
es-E-interface: E(X)
,
exists: ∃x:A. B[x]
Latex:
\mforall{}[Info:Type]
\mforall{}es:EO+(Info)
\mforall{}[T:Type]
\mforall{}X:EClass(T). \mforall{}P:E(X) {}\mrightarrow{} \mBbbB{}. \mforall{}n:\mBbbN{}\msupplus{}. \mforall{}f:\mBbbN{}n {}\mrightarrow{} \{e:E(X)| \muparrow{}P[e]\} .
(\mexists{}e:\{e:E(X)| \muparrow{}P[e]\} . (n \mleq{} ||filter(\mlambda{}e.P[e];\mleq{}(X)(e))||)) supposing
((\mforall{}i,j:\mBbbN{}n. (loc(f i) = loc(f j))) and
Inj(\mBbbN{}n;\{e:E(X)| \muparrow{}P[e]\} ;f))
Date html generated:
2016_05_17-AM-07_06_15
Last ObjectModification:
2015_12_29-AM-00_14_10
Theory : event-ordering
Home
Index