Nuprl Lemma : fpf-compatible-join2
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[B:A ⟶ Type]. ∀[f,g,h:a:A fp-> B[a]]. (f ⊕ g || h) supposing (g || h and f || h)
Proof
Definitions occuring in Statement :
fpf-join: f ⊕ g
,
fpf-compatible: f || g
,
fpf: a:A fp-> B[a]
,
deq: EqDecider(T)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
fpf-compatible: f || g
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
subtype_rel: A ⊆r B
,
top: Top
,
prop: ℙ
Latex:
\mforall{}[A:Type]. \mforall{}[eq:EqDecider(A)]. \mforall{}[B:A {}\mrightarrow{} Type]. \mforall{}[f,g,h:a:A fp-> B[a]].
(f \moplus{} g || h) supposing (g || h and f || h)
Date html generated:
2016_05_16-AM-11_29_08
Last ObjectModification:
2015_12_29-AM-09_25_11
Theory : event-ordering
Home
Index