Nuprl Lemma : fpf-join-list-dom
∀[A:Type]. ∀eq:EqDecider(A). ∀[B:A ⟶ Type]. ∀L:a:A fp-> B[a] List. ∀x:A. (↑x ∈ dom(⊕(L))
⇐⇒ (∃f∈L. ↑x ∈ dom(f)))
Proof
Definitions occuring in Statement :
fpf-join-list: ⊕(L)
,
fpf-dom: x ∈ dom(f)
,
fpf: a:A fp-> B[a]
,
l_exists: (∃x∈L. P[x])
,
list: T List
,
deq: EqDecider(T)
,
assert: ↑b
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
top: Top
,
prop: ℙ
,
implies: P
⇒ Q
,
fpf-join-list: ⊕(L)
,
fpf-empty: ⊗
,
fpf-dom: x ∈ dom(f)
,
pi1: fst(t)
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
false: False
,
rev_implies: P
⇐ Q
,
or: P ∨ Q
,
guard: {T}
Latex:
\mforall{}[A:Type]
\mforall{}eq:EqDecider(A)
\mforall{}[B:A {}\mrightarrow{} Type]. \mforall{}L:a:A fp-> B[a] List. \mforall{}x:A. (\muparrow{}x \mmember{} dom(\moplus{}(L)) \mLeftarrow{}{}\mRightarrow{} (\mexists{}f\mmember{}L. \muparrow{}x \mmember{} dom(f)))
Date html generated:
2016_05_16-AM-11_12_33
Last ObjectModification:
2015_12_29-AM-09_19_36
Theory : event-ordering
Home
Index